Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sin(180+45)=\sin(180)\cos(45)+\sin(45)\cos(180)
Whakamahia \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) ina x=180 me te y=45 kia whiwhi i te hua.
0\cos(45)+\sin(45)\cos(180)
Tīkina te uara \sin(180) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\sin(45)\cos(180)
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\cos(180)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(-1\right)
Tīkina te uara \cos(180) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.