Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sin(\frac{3\pi }{2}+\frac{\pi }{4})=\sin(\frac{3\pi }{2})\cos(\frac{\pi }{4})+\sin(\frac{\pi }{4})\cos(\frac{3\pi }{2})
Whakamahia \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) ina x=\frac{3\pi }{2} me te y=\frac{\pi }{4} kia whiwhi i te hua.
-\cos(\frac{\pi }{4})+\sin(\frac{\pi }{4})\cos(\frac{3\pi }{2})
Tīkina te uara \sin(\frac{3\pi }{2}) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\sin(\frac{\pi }{4})\cos(\frac{3\pi }{2})
Tīkina te uara \cos(\frac{\pi }{4}) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\cos(\frac{3\pi }{2})
Tīkina te uara \sin(\frac{\pi }{4}) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\times 0
Tīkina te uara \cos(\frac{3\pi }{2}) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.