Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sin(270+45)=\sin(270)\cos(45)+\sin(45)\cos(270)
Whakamahia \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) ina x=270 me te y=45 kia whiwhi i te hua.
-\cos(45)+\sin(45)\cos(270)
Tīkina te uara \sin(270) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\sin(45)\cos(270)
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\cos(270)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\times 0
Tīkina te uara \cos(270) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.