Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
\sin(30)=\sin(150)\cos(120)-\sin(120)\cos(150)
Tangohia te 120 i te 150, ka 30.
\frac{1}{2}=\sin(150)\cos(120)-\sin(120)\cos(150)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1}{2}\left(\sin(150-120)+\sin(150+120)\right)-\sin(120)\cos(150)
Whakamahia \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) kia whiwhi i te hua.
\frac{1}{2}=\frac{1}{2}\left(\sin(30)+\sin(270)\right)-\sin(120)\cos(150)
Tango 120 mai i 150. Tāpiri 120 ki te 150.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}+\sin(270)\right)-\sin(120)\cos(150)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}-1\right)-\sin(120)\cos(150)
Tīkina te uara \sin(270) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\sin(120)\cos(150)
Mahia ngā tātaitai.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(120-150)+\sin(120+150)\right)
Whakamahia \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) kia whiwhi i te hua.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(-30)+\sin(270)\right)
Tango 150 mai i 120. Tāpiri 150 ki te 120.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\sin(30)+\sin(270)\right)
Whakamahia te āhuatanga \sin(-x)=-\sin(x).
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}+\sin(270)\right)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}-1\right)
Tīkina te uara \sin(270) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\left(-\frac{3}{4}\right)
Mahia ngā tātaitai.
\frac{1}{2}=-\frac{1}{4}+\frac{3}{4}
Ko te tauaro o -\frac{3}{4} ko \frac{3}{4}.
\frac{1}{2}=\frac{1}{2}
Tāpirihia te -\frac{1}{4} ki te \frac{3}{4}, ka \frac{1}{2}.
\text{true}
Whakatauritea te \frac{1}{2} me te \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}