Tīpoka ki ngā ihirangi matua
Manatoko
pono
Tick mark Image

Tohaina

\sin(30)=\sin(150)\cos(120)-\sin(120)\cos(150)
Tangohia te 120 i te 150, ka 30.
\frac{1}{2}=\sin(150)\cos(120)-\sin(120)\cos(150)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1}{2}\left(\sin(150-120)+\sin(150+120)\right)-\sin(120)\cos(150)
Whakamahia \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) kia whiwhi i te hua.
\frac{1}{2}=\frac{1}{2}\left(\sin(30)+\sin(270)\right)-\sin(120)\cos(150)
Tango 120 mai i 150. Tāpiri 120 ki te 150.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}+\sin(270)\right)-\sin(120)\cos(150)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1}{2}\left(\frac{1}{2}-1\right)-\sin(120)\cos(150)
Tīkina te uara \sin(270) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\sin(120)\cos(150)
Mahia ngā tātaitai.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(120-150)+\sin(120+150)\right)
Whakamahia \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) kia whiwhi i te hua.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(\sin(-30)+\sin(270)\right)
Tango 150 mai i 120. Tāpiri 150 ki te 120.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\sin(30)+\sin(270)\right)
Whakamahia te āhuatanga \sin(-x)=-\sin(x).
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}+\sin(270)\right)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\frac{1}{2}\left(-\frac{1}{2}-1\right)
Tīkina te uara \sin(270) mai i te ripanga uara pākoki.
\frac{1}{2}=-\frac{1}{4}-\left(-\frac{3}{4}\right)
Mahia ngā tātaitai.
\frac{1}{2}=-\frac{1}{4}+\frac{3}{4}
Ko te tauaro o -\frac{3}{4} ko \frac{3}{4}.
\frac{1}{2}=\frac{1}{2}
Tāpirihia te -\frac{1}{4} ki te \frac{3}{4}, ka \frac{1}{2}.
\text{true}
Whakatauritea te \frac{1}{2} me te \frac{1}{2}.