Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sin(\pi +\frac{\pi }{4})=\sin(\pi )\cos(\frac{\pi }{4})+\sin(\frac{\pi }{4})\cos(\pi )
Whakamahia \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) ina x=\pi me te y=\frac{\pi }{4} kia whiwhi i te hua.
0\cos(\frac{\pi }{4})+\sin(\frac{\pi }{4})\cos(\pi )
Tīkina te uara \sin(\pi ) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\sin(\frac{\pi }{4})\cos(\pi )
Tīkina te uara \cos(\frac{\pi }{4}) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\cos(\pi )
Tīkina te uara \sin(\frac{\pi }{4}) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(-1\right)
Tīkina te uara \cos(\pi ) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.