Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki β
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}\beta }(\sin(\beta ))=\left(\lim_{h\to 0}\frac{\sin(\beta +h)-\sin(\beta )}{h}\right)
Mō tētahi pānga f\left(x\right), ko te pārōnaki te tepe o \frac{f\left(x+h\right)-f\left(x\right)}{h} ina haere h ki 0, mēnā kei reira taua tepe.
\lim_{h\to 0}\frac{\sin(h+\beta )-\sin(\beta )}{h}
Whakamahia te Tikanga Tātai Tapeke mō te Aho.
\lim_{h\to 0}\frac{\sin(\beta )\left(\cos(h)-1\right)+\cos(\beta )\sin(h)}{h}
Tauwehea te \sin(\beta ).
\left(\lim_{h\to 0}\sin(\beta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\beta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Tuhia anō te tepe.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Whakamahia te meka ko \beta he pūmau ina tātai tepe i te wā ka haere h ki te 0.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )
Ko te tepe \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } he 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Hei arotake i te tepe \lim_{h\to 0}\frac{\cos(h)-1}{h}, tuatahi me whakarea te taurunga me te tauraro ki te \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Whakareatia \cos(h)+1 ki te \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Whakamahia te Tuakiri Pythagorean.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Tuhia anō te tepe.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Ko te tepe \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } he 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Whakamahia te meka he motukore a \frac{\sin(h)}{\cos(h)+1} i 0.
\cos(\beta )
Whakakapihia te uara 0 ki roto i te kīanga \sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta ).