Aromātai
\frac{\sqrt{3}+1}{2}\approx 1.366025404
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{2}\right)^{2}+\sin(60)-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{1}{4}+\sin(60)-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}+\frac{\sqrt{3}}{2}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
\frac{1}{4}+\frac{2\sqrt{3}}{4}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 2 ko 4. Whakareatia \frac{\sqrt{3}}{2} ki te \frac{2}{2}.
\frac{1+2\sqrt{3}}{4}-\left(\sin(45)\right)^{2}+\left(\cos(30)\right)^{2}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{2\sqrt{3}}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1+2\sqrt{3}}{4}-\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\cos(30)\right)^{2}
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
\frac{1+2\sqrt{3}}{4}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\left(\cos(30)\right)^{2}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1+2\sqrt{3}}{4}-\frac{2}{2^{2}}+\left(\cos(30)\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{1+2\sqrt{3}}{4}-\frac{2}{4}+\left(\cos(30)\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1+2\sqrt{3}-2}{4}+\left(\cos(30)\right)^{2}
Tā te mea he rite te tauraro o \frac{1+2\sqrt{3}}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-1+2\sqrt{3}}{4}+\left(\cos(30)\right)^{2}
Mahia ngā tātaitai i roto o 1+2\sqrt{3}-2.
\frac{-1+2\sqrt{3}}{4}+\left(\frac{\sqrt{3}}{2}\right)^{2}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{-1+2\sqrt{3}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-1+2\sqrt{3}}{4}+\frac{\left(\sqrt{3}\right)^{2}}{4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakarohaina te 2^{2}.
\frac{-1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{4}
Tā te mea he rite te tauraro o \frac{-1+2\sqrt{3}}{4} me \frac{\left(\sqrt{3}\right)^{2}}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-1+2\sqrt{3}}{4}+\frac{3}{2^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-1+2\sqrt{3}}{4}+\frac{3}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-1+2\sqrt{3}+3}{4}
Tā te mea he rite te tauraro o \frac{-1+2\sqrt{3}}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2+2\sqrt{3}}{4}
Mahia ngā tātaitai i roto o -1+2\sqrt{3}+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}