Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\tan(30)\right)^{2}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\tan(30)\right)^{2}
Kia whakarewa i te \frac{\sqrt{3}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}+\left(\tan(30)\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakarohaina te 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\tan(30)\right)^{2}
Tā te mea he rite te tauraro o \frac{\left(\sqrt{3}\right)^{2}}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\frac{\sqrt{3}}{3}\right)^{2}
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36}+\frac{4\left(\sqrt{3}\right)^{2}}{36}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3^{2} ko 36. Whakareatia \frac{\left(\sqrt{3}\right)^{2}-3}{4} ki te \frac{9}{9}. Whakareatia \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} ki te \frac{4}{4}.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)+4\left(\sqrt{3}\right)^{2}}{36}
Tā te mea he rite te tauraro o \frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36} me \frac{4\left(\sqrt{3}\right)^{2}}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{0}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Tangohia te 3 i te 3, ka 0.
0+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0+\frac{3}{3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
0+\frac{3}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
0+\frac{1}{3}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{3}
Tāpirihia te 0 ki te \frac{1}{3}, ka \frac{1}{3}.