Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{\sqrt{2}}{2}\right)^{2}+1
Tīkina te uara \sin(\frac{\pi }{4}) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+1
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}}{2^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{2}\right)^{2}+2^{2}}{2^{2}}
Tā te mea he rite te tauraro o \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} me \frac{2^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2}{2^{2}}+1
Ko te pūrua o \sqrt{2} ko 2.
\frac{2}{4}+1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{2}+1
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{2}
Tāpirihia te \frac{1}{2} ki te 1, ka \frac{3}{2}.