Tīpoka ki ngā ihirangi matua
Whakaoti mō σ_x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\sigma _{x}^{2}=\frac{16}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\sigma _{x}^{2}=\frac{16}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}^{2}-\frac{16}{9}=0
Tangohia te \frac{16}{9} mai i ngā taha e rua.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{16}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)}}{2}
Pūrua 0.
\sigma _{x}=\frac{0±\sqrt{\frac{64}{9}}}{2}
Whakareatia -4 ki te -\frac{16}{9}.
\sigma _{x}=\frac{0±\frac{8}{3}}{2}
Tuhia te pūtakerua o te \frac{64}{9}.
\sigma _{x}=\frac{4}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{8}{3}}{2} ina he tāpiri te ±.
\sigma _{x}=-\frac{4}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{8}{3}}{2} ina he tango te ±.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Kua oti te whārite te whakatau.