Whakaoti mō σ_x
\sigma _{x}=\frac{4}{3}
\sigma _{x}=-\frac{4}{3}
Whakaoti mō x (complex solution)
x\in \mathrm{C}
\sigma _{x}=\frac{4}{3}\text{ or }\sigma _{x}=-\frac{4}{3}
Whakaoti mō x
x\in \mathrm{R}
|\sigma _{x}|=\frac{4}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\sigma _{x}^{2}=\frac{16}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\sigma _{x}^{2}=\frac{16}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}^{2}-\frac{16}{9}=0
Tangohia te \frac{16}{9} mai i ngā taha e rua.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{16}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)}}{2}
Pūrua 0.
\sigma _{x}=\frac{0±\sqrt{\frac{64}{9}}}{2}
Whakareatia -4 ki te -\frac{16}{9}.
\sigma _{x}=\frac{0±\frac{8}{3}}{2}
Tuhia te pūtakerua o te \frac{64}{9}.
\sigma _{x}=\frac{4}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{8}{3}}{2} ina he tāpiri te ±.
\sigma _{x}=-\frac{4}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{8}{3}}{2} ina he tango te ±.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}