Tīpoka ki ngā ihirangi matua
Whakaoti mō σ_x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 0 ki te \frac{1}{3}, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
Whakareatia te 1 ki te 9, ka 9.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\sigma _{x}^{2}=\frac{16}{9}+18
Whakareatia te 81 ki te \frac{2}{9}, ka 18.
\sigma _{x}^{2}=\frac{178}{9}
Tāpirihia te \frac{16}{9} ki te 18, ka \frac{178}{9}.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tangohia te 0 i te -2, ka -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 4 ki te \frac{4}{9}, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 0 ki te 0, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
Whakareatia te 0 ki te \frac{1}{3}, ka 0.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
Tāpirihia te \frac{16}{9} ki te 0, ka \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
Whakareatia te 1 ki te 9, ka 9.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\sigma _{x}^{2}=\frac{16}{9}+18
Whakareatia te 81 ki te \frac{2}{9}, ka 18.
\sigma _{x}^{2}=\frac{178}{9}
Tāpirihia te \frac{16}{9} ki te 18, ka \frac{178}{9}.
\sigma _{x}^{2}-\frac{178}{9}=0
Tangohia te \frac{178}{9} mai i ngā taha e rua.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{178}{9}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{178}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{178}{9}\right)}}{2}
Pūrua 0.
\sigma _{x}=\frac{0±\sqrt{\frac{712}{9}}}{2}
Whakareatia -4 ki te -\frac{178}{9}.
\sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2}
Tuhia te pūtakerua o te \frac{712}{9}.
\sigma _{x}=\frac{\sqrt{178}}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} ina he tāpiri te ±.
\sigma _{x}=-\frac{\sqrt{178}}{3}
Nā, me whakaoti te whārite \sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} ina he tango te ±.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
Kua oti te whārite te whakatau.