Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki t
Tick mark Image
Aromātai
Tick mark Image

Tohaina

\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{\cos(t)})
Whakamahia te tautuhinga o te whenu taupoki.
\frac{\cos(t)\frac{\mathrm{d}}{\mathrm{d}t}(1)-\frac{\mathrm{d}}{\mathrm{d}t}(\cos(t))}{\left(\cos(t)\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
-\frac{-\sin(t)}{\left(\cos(t)\right)^{2}}
Ko te pārōnaki o te pūmau 1 ko 0, ā, ko te pārōnaki o cos(t) ko −sin(t).
\frac{\sin(t)}{\left(\cos(t)\right)^{2}}
Whakarūnātia.
\frac{1}{\cos(t)}\times \frac{\sin(t)}{\cos(t)}
Tuhia anō te otinga hei hua o ngā otinga e rua.
\sec(t)\times \frac{\sin(t)}{\cos(t)}
Whakamahia te tautuhinga o te whenu taupoki.
\sec(t)\tan(t)
Whakamahia te tautuhinga o te pātapa.