Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki Q
Tick mark Image
Aromātai
Tick mark Image

Tohaina

\frac{\mathrm{d}}{\mathrm{d}Q}(\frac{1}{\cos(Q)})
Whakamahia te tautuhinga o te whenu taupoki.
\frac{\cos(Q)\frac{\mathrm{d}}{\mathrm{d}Q}(1)-\frac{\mathrm{d}}{\mathrm{d}Q}(\cos(Q))}{\left(\cos(Q)\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
-\frac{-\sin(Q)}{\left(\cos(Q)\right)^{2}}
Ko te pārōnaki o te pūmau 1 ko 0, ā, ko te pārōnaki o cos(Q) ko −sin(Q).
\frac{\sin(Q)}{\left(\cos(Q)\right)^{2}}
Whakarūnātia.
\frac{1}{\cos(Q)}\times \frac{\sin(Q)}{\cos(Q)}
Tuhia anō te otinga hei hua o ngā otinga e rua.
\sec(Q)\times \frac{\sin(Q)}{\cos(Q)}
Whakamahia te tautuhinga o te whenu taupoki.
\sec(Q)\tan(Q)
Whakamahia te tautuhinga o te pātapa.