Kimi Pārōnaki e ai ki Q
\frac{\tan(Q)}{\cos(Q)}
Aromātai
\frac{1}{\cos(Q)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\mathrm{d}}{\mathrm{d}Q}(\frac{1}{\cos(Q)})
Whakamahia te tautuhinga o te whenu taupoki.
\frac{\cos(Q)\frac{\mathrm{d}}{\mathrm{d}Q}(1)-\frac{\mathrm{d}}{\mathrm{d}Q}(\cos(Q))}{\left(\cos(Q)\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
-\frac{-\sin(Q)}{\left(\cos(Q)\right)^{2}}
Ko te pārōnaki o te pūmau 1 ko 0, ā, ko te pārōnaki o cos(Q) ko −sin(Q).
\frac{\sin(Q)}{\left(\cos(Q)\right)^{2}}
Whakarūnātia.
\frac{1}{\cos(Q)}\times \frac{\sin(Q)}{\cos(Q)}
Tuhia anō te otinga hei hua o ngā otinga e rua.
\sec(Q)\times \frac{\sin(Q)}{\cos(Q)}
Whakamahia te tautuhinga o te whenu taupoki.
\sec(Q)\tan(Q)
Whakamahia te tautuhinga o te pātapa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}