\quad \text { 36 If } \frac { \sqrt { 7 } - 2 } { \sqrt { 7 } + 2 } = a \sqrt { 7 } + b
Whakaoti mō I
\left\{\begin{matrix}I=\frac{4\sqrt{7}b+11\sqrt{7}a+11b+28a}{108f}\text{, }&f\neq 0\\I\in \mathrm{R}\text{, }&a=-\frac{\sqrt{7}b}{7}\text{ and }f=0\end{matrix}\right.
Whakaoti mō a
a=-\frac{\sqrt{7}\left(48\sqrt{7}If-132If+b\right)}{7}
Tohaina
Kua tāruatia ki te papatopenga
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}=a\sqrt{7}+b
Whakangāwaritia te tauraro o \frac{\sqrt{7}-2}{\sqrt{7}+2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-2.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}=a\sqrt{7}+b
Whakaarohia te \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{7-4}=a\sqrt{7}+b
Pūrua \sqrt{7}. Pūrua 2.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{3}=a\sqrt{7}+b
Tangohia te 4 i te 7, ka 3.
36If\times \frac{\left(\sqrt{7}-2\right)^{2}}{3}=a\sqrt{7}+b
Whakareatia te \sqrt{7}-2 ki te \sqrt{7}-2, ka \left(\sqrt{7}-2\right)^{2}.
36If\times \frac{\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4}{3}=a\sqrt{7}+b
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{7}-2\right)^{2}.
36If\times \frac{7-4\sqrt{7}+4}{3}=a\sqrt{7}+b
Ko te pūrua o \sqrt{7} ko 7.
36If\times \frac{11-4\sqrt{7}}{3}=a\sqrt{7}+b
Tāpirihia te 7 ki te 4, ka 11.
12\left(11-4\sqrt{7}\right)If=a\sqrt{7}+b
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 36 me te 3.
\left(132-48\sqrt{7}\right)If=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 11-4\sqrt{7}.
\left(132I-48\sqrt{7}I\right)f=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 132-48\sqrt{7} ki te I.
132If-48\sqrt{7}If=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 132I-48\sqrt{7}I ki te f.
\left(132f-48\sqrt{7}f\right)I=a\sqrt{7}+b
Pahekotia ngā kīanga tau katoa e whai ana i te I.
\left(-48\sqrt{7}f+132f\right)I=\sqrt{7}a+b
He hanga arowhānui tō te whārite.
\frac{\left(-48\sqrt{7}f+132f\right)I}{-48\sqrt{7}f+132f}=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
Whakawehea ngā taha e rua ki te 132f-48\sqrt{7}f.
I=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
Mā te whakawehe ki te 132f-48\sqrt{7}f ka wetekia te whakareanga ki te 132f-48\sqrt{7}f.
I=\frac{\left(4\sqrt{7}+11\right)\left(\sqrt{7}a+b\right)}{108f}
Whakawehe a\sqrt{7}+b ki te 132f-48\sqrt{7}f.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}=a\sqrt{7}+b
Whakangāwaritia te tauraro o \frac{\sqrt{7}-2}{\sqrt{7}+2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-2.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}=a\sqrt{7}+b
Whakaarohia te \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{7-4}=a\sqrt{7}+b
Pūrua \sqrt{7}. Pūrua 2.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{3}=a\sqrt{7}+b
Tangohia te 4 i te 7, ka 3.
36If\times \frac{\left(\sqrt{7}-2\right)^{2}}{3}=a\sqrt{7}+b
Whakareatia te \sqrt{7}-2 ki te \sqrt{7}-2, ka \left(\sqrt{7}-2\right)^{2}.
36If\times \frac{\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4}{3}=a\sqrt{7}+b
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{7}-2\right)^{2}.
36If\times \frac{7-4\sqrt{7}+4}{3}=a\sqrt{7}+b
Ko te pūrua o \sqrt{7} ko 7.
36If\times \frac{11-4\sqrt{7}}{3}=a\sqrt{7}+b
Tāpirihia te 7 ki te 4, ka 11.
12\left(11-4\sqrt{7}\right)If=a\sqrt{7}+b
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 36 me te 3.
\left(132-48\sqrt{7}\right)If=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 11-4\sqrt{7}.
\left(132I-48\sqrt{7}I\right)f=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 132-48\sqrt{7} ki te I.
132If-48\sqrt{7}If=a\sqrt{7}+b
Whakamahia te āhuatanga tohatoha hei whakarea te 132I-48\sqrt{7}I ki te f.
a\sqrt{7}+b=132If-48\sqrt{7}If
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a\sqrt{7}=132If-48\sqrt{7}If-b
Tangohia te b mai i ngā taha e rua.
\sqrt{7}a=-48\sqrt{7}If+132If-b
He hanga arowhānui tō te whārite.
\frac{\sqrt{7}a}{\sqrt{7}}=\frac{-48\sqrt{7}If+132If-b}{\sqrt{7}}
Whakawehea ngā taha e rua ki te \sqrt{7}.
a=\frac{-48\sqrt{7}If+132If-b}{\sqrt{7}}
Mā te whakawehe ki te \sqrt{7} ka wetekia te whakareanga ki te \sqrt{7}.
a=\frac{\sqrt{7}\left(-48\sqrt{7}If+132If-b\right)}{7}
Whakawehe -b+132fI-48\sqrt{7}fI ki te \sqrt{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}