Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\pi r^{2}}{\pi }=\frac{48}{\pi }
Whakawehea ngā taha e rua ki te \pi .
r^{2}=\frac{48}{\pi }
Mā te whakawehe ki te \pi ka wetekia te whakareanga ki te \pi .
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\pi r^{2}-48=0
Tangohia te 48 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-48\right)}}{2\pi }
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \pi mō a, 0 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-48\right)}}{2\pi }
Pūrua 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-48\right)}}{2\pi }
Whakareatia -4 ki te \pi .
r=\frac{0±\sqrt{192\pi }}{2\pi }
Whakareatia -4\pi ki te -48.
r=\frac{0±8\sqrt{3\pi }}{2\pi }
Tuhia te pūtakerua o te 192\pi .
r=\frac{12}{\sqrt{3\pi }}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{3\pi }}{2\pi } ina he tāpiri te ±.
r=-\frac{12}{\sqrt{3\pi }}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{3\pi }}{2\pi } ina he tango te ±.
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Kua oti te whārite te whakatau.