Whakaoti mō r
r=4\sqrt{\frac{3}{\pi }}\approx 3.908820095
r=-4\sqrt{\frac{3}{\pi }}\approx -3.908820095
Tohaina
Kua tāruatia ki te papatopenga
\frac{\pi r^{2}}{\pi }=\frac{48}{\pi }
Whakawehea ngā taha e rua ki te \pi .
r^{2}=\frac{48}{\pi }
Mā te whakawehe ki te \pi ka wetekia te whakareanga ki te \pi .
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\pi r^{2}-48=0
Tangohia te 48 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-48\right)}}{2\pi }
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \pi mō a, 0 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-48\right)}}{2\pi }
Pūrua 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-48\right)}}{2\pi }
Whakareatia -4 ki te \pi .
r=\frac{0±\sqrt{192\pi }}{2\pi }
Whakareatia -4\pi ki te -48.
r=\frac{0±8\sqrt{3\pi }}{2\pi }
Tuhia te pūtakerua o te 192\pi .
r=\frac{12}{\sqrt{3\pi }}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{3\pi }}{2\pi } ina he tāpiri te ±.
r=-\frac{12}{\sqrt{3\pi }}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{3\pi }}{2\pi } ina he tango te ±.
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}