Tīpoka ki ngā ihirangi matua
Whakaoti mō γ
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\gamma ^{2}=4
Me whakakore te \pi ki ngā taha e rua.
\gamma ^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
\left(\gamma -2\right)\left(\gamma +2\right)=0
Whakaarohia te \gamma ^{2}-4. Tuhia anō te \gamma ^{2}-4 hei \gamma ^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\gamma =2 \gamma =-2
Hei kimi otinga whārite, me whakaoti te \gamma -2=0 me te \gamma +2=0.
\gamma ^{2}=4
Me whakakore te \pi ki ngā taha e rua.
\gamma =2 \gamma =-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\gamma ^{2}=4
Me whakakore te \pi ki ngā taha e rua.
\gamma ^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
\gamma =\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\gamma =\frac{0±\sqrt{-4\left(-4\right)}}{2}
Pūrua 0.
\gamma =\frac{0±\sqrt{16}}{2}
Whakareatia -4 ki te -4.
\gamma =\frac{0±4}{2}
Tuhia te pūtakerua o te 16.
\gamma =2
Nā, me whakaoti te whārite \gamma =\frac{0±4}{2} ina he tāpiri te ±. Whakawehe 4 ki te 2.
\gamma =-2
Nā, me whakaoti te whārite \gamma =\frac{0±4}{2} ina he tango te ±. Whakawehe -4 ki te 2.
\gamma =2 \gamma =-2
Kua oti te whārite te whakatau.