Aromātai
\frac{15\pi }{68}\approx 0.692998379
Whakaroha
\frac{15 \pi}{68} = 0.6929983794683366
Tohaina
Kua tāruatia ki te papatopenga
\frac{\pi \times 2}{1\times 2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakawehe \pi ki te \frac{1\times 2+1}{2} mā te whakarea \pi ki te tau huripoki o \frac{1\times 2+1}{2}.
\frac{\pi \times 2}{2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 2, ka 2.
\frac{\pi \times 2}{3}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\pi \times 2}{3}\times \frac{\left(3\times 2+1\right)\times 3}{2\left(2\times 3+1\right)}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakawehe \frac{3\times 2+1}{2} ki te \frac{2\times 3+1}{3} mā te whakarea \frac{3\times 2+1}{2} ki te tau huripoki o \frac{2\times 3+1}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Me whakakore tahi te 1+2\times 3 i te taurunga me te tauraro.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 4, ka 4.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{3\times 3+2}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{9+2}{3}}
Whakareatia te 3 ki te 3, ka 9.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{11}{3}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6}{3}+\frac{11}{3}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6+11}{3}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{11}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{17}{3}}
Tāpirihia te 6 ki te 11, ka 17.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5}{4}\times \frac{3}{17}
Whakawehe \frac{5}{4} ki te \frac{17}{3} mā te whakarea \frac{5}{4} ki te tau huripoki o \frac{17}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5\times 3}{4\times 17}
Me whakarea te \frac{5}{4} ki te \frac{3}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{15}{68}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 3}{4\times 17}.
\frac{\pi \times 2}{3}\times \frac{3\times 15}{2\times 68}
Me whakarea te \frac{3}{2} ki te \frac{15}{68} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\pi \times 2}{3}\times \frac{45}{136}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 15}{2\times 68}.
\frac{\pi \times 2\times 45}{3\times 136}
Me whakarea te \frac{\pi \times 2}{3} ki te \frac{45}{136} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{15\pi }{68}
Me whakakore tahi te 2\times 3 i te taurunga me te tauraro.
\frac{\pi \times 2}{1\times 2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakawehe \pi ki te \frac{1\times 2+1}{2} mā te whakarea \pi ki te tau huripoki o \frac{1\times 2+1}{2}.
\frac{\pi \times 2}{2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 2, ka 2.
\frac{\pi \times 2}{3}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\pi \times 2}{3}\times \frac{\left(3\times 2+1\right)\times 3}{2\left(2\times 3+1\right)}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakawehe \frac{3\times 2+1}{2} ki te \frac{2\times 3+1}{3} mā te whakarea \frac{3\times 2+1}{2} ki te tau huripoki o \frac{2\times 3+1}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
Me whakakore tahi te 1+2\times 3 i te taurunga me te tauraro.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{4+1}{4}}{2+\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 4, ka 4.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{3\times 3+2}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{9+2}{3}}
Whakareatia te 3 ki te 3, ka 9.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{11}{3}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6}{3}+\frac{11}{3}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6+11}{3}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{11}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{17}{3}}
Tāpirihia te 6 ki te 11, ka 17.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5}{4}\times \frac{3}{17}
Whakawehe \frac{5}{4} ki te \frac{17}{3} mā te whakarea \frac{5}{4} ki te tau huripoki o \frac{17}{3}.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5\times 3}{4\times 17}
Me whakarea te \frac{5}{4} ki te \frac{3}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{15}{68}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 3}{4\times 17}.
\frac{\pi \times 2}{3}\times \frac{3\times 15}{2\times 68}
Me whakarea te \frac{3}{2} ki te \frac{15}{68} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\pi \times 2}{3}\times \frac{45}{136}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 15}{2\times 68}.
\frac{\pi \times 2\times 45}{3\times 136}
Me whakarea te \frac{\pi \times 2}{3} ki te \frac{45}{136} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{15\pi }{68}
Me whakakore tahi te 2\times 3 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}