Whakaoti mō x (complex solution)
x=\frac{\sqrt{-\frac{707963\pi }{1250000}+9}-3}{2\pi }\approx -0.049793999
x=-\frac{\sqrt{-\frac{707963\pi }{1250000}+9}+3}{2\pi }\approx -0.905135659
Whakaoti mō x
x=\frac{\sqrt{5\left(11250000-707963\pi \right)}-7500}{5000\pi }\approx -0.049793999
x=-\frac{\sqrt{5\left(11250000-707963\pi \right)}+7500}{5000\pi }\approx -0.905135659
Graph
Tohaina
Kua tāruatia ki te papatopenga
\pi x^{2}+3x+0.1415926=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \pi mō a, 3 mō b, me 0.1415926 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Pūrua 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Whakareatia -4 ki te \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Whakareatia -4\pi ki te 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Tāpiri 9 ki te -\frac{707963\pi }{1250000}.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tuhia te pūtakerua o te 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Nā, me whakaoti te whārite x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ina he tāpiri te ±. Tāpiri -3 ki te \frac{\sqrt{56250000-3539815\pi }}{2500}.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Whakawehe -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ki te 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Nā, me whakaoti te whārite x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ina he tango te ±. Tango \frac{\sqrt{56250000-3539815\pi }}{2500} mai i -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Whakawehe -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ki te 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Kua oti te whārite te whakatau.
\pi x^{2}+3x+0.1415926=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Me tango 0.1415926 mai i ngā taha e rua o te whārite.
\pi x^{2}+3x=-0.1415926
Mā te tango i te 0.1415926 i a ia ake anō ka toe ko te 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Whakawehea ngā taha e rua ki te \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Mā te whakawehe ki te \pi ka wetekia te whakareanga ki te \pi .
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Whakawehe -0.1415926 ki te \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Whakawehea te \frac{3}{\pi }, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2\pi }. Nā, tāpiria te pūrua o te \frac{3}{2\pi } ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Pūrua \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Tāpiri -\frac{707963}{5000000\pi } ki te \frac{9}{4\pi ^{2}}.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Tauwehea x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Whakarūnātia.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Me tango \frac{3}{2\pi } mai i ngā taha e rua o te whārite.
\pi x^{2}+3x+0.1415926=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \pi mō a, 3 mō b, me 0.1415926 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Pūrua 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Whakareatia -4 ki te \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Whakareatia -4\pi ki te 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Tāpiri 9 ki te -\frac{707963\pi }{1250000}.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tuhia te pūtakerua o te 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Nā, me whakaoti te whārite x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ina he tāpiri te ±. Tāpiri -3 ki te \frac{\sqrt{56250000-3539815\pi }}{2500}.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Whakawehe -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ki te 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Nā, me whakaoti te whārite x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ina he tango te ±. Tango \frac{\sqrt{56250000-3539815\pi }}{2500} mai i -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Whakawehe -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ki te 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Kua oti te whārite te whakatau.
\pi x^{2}+3x+0.1415926=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Me tango 0.1415926 mai i ngā taha e rua o te whārite.
\pi x^{2}+3x=-0.1415926
Mā te tango i te 0.1415926 i a ia ake anō ka toe ko te 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Whakawehea ngā taha e rua ki te \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Mā te whakawehe ki te \pi ka wetekia te whakareanga ki te \pi .
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Whakawehe -0.1415926 ki te \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Whakawehea te \frac{3}{\pi }, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2\pi }. Nā, tāpiria te pūrua o te \frac{3}{2\pi } ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Pūrua \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Tāpiri -\frac{707963}{5000000\pi } ki te \frac{9}{4\pi ^{2}}.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Tauwehea x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Whakarūnātia.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Me tango \frac{3}{2\pi } mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}