Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki ϕ
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{ϕ\left(2\times 4\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{ϕ\left(8\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Whakareatia te 2 ki te 4, ka 8.
\frac{ϕ\left(8\sqrt{3}-3\times 3\sqrt{3}\right)}{\sqrt{6}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{ϕ\left(8\sqrt{3}-9\sqrt{3}\right)}{\sqrt{6}}
Whakareatia te -3 ki te 3, ka -9.
\frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}}
Pahekotia te 8\sqrt{3} me -9\sqrt{3}, ka -\sqrt{3}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{ϕ\left(-1\right)\times 3\sqrt{2}}{6}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{ϕ\left(-3\right)\sqrt{2}}{6}
Whakareatia te -1 ki te 3, ka -3.
ϕ\left(-\frac{1}{2}\right)\sqrt{2}
Whakawehea te ϕ\left(-3\right)\sqrt{2} ki te 6, kia riro ko ϕ\left(-\frac{1}{2}\right)\sqrt{2}.