Aromātai
-\frac{\sqrt{2}ϕ}{2}
Kimi Pārōnaki e ai ki ϕ
-\frac{\sqrt{2}}{2} = -0.7071067811865476
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\phi ( 2 \sqrt { 48 } - 3 \sqrt { 27 } ) \div \sqrt { 6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{ϕ\left(2\times 4\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{ϕ\left(8\sqrt{3}-3\sqrt{27}\right)}{\sqrt{6}}
Whakareatia te 2 ki te 4, ka 8.
\frac{ϕ\left(8\sqrt{3}-3\times 3\sqrt{3}\right)}{\sqrt{6}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{ϕ\left(8\sqrt{3}-9\sqrt{3}\right)}{\sqrt{6}}
Whakareatia te -3 ki te 3, ka -9.
\frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}}
Pahekotia te 8\sqrt{3} me -9\sqrt{3}, ka -\sqrt{3}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{ϕ\left(-1\right)\sqrt{3}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{ϕ\left(-1\right)\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{ϕ\left(-1\right)\times 3\sqrt{2}}{6}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{ϕ\left(-3\right)\sqrt{2}}{6}
Whakareatia te -1 ki te 3, ka -3.
ϕ\left(-\frac{1}{2}\right)\sqrt{2}
Whakawehea te ϕ\left(-3\right)\sqrt{2} ki te 6, kia riro ko ϕ\left(-\frac{1}{2}\right)\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}