Tīpoka ki ngā ihirangi matua
Whakaoti mō N
Tick mark Image
Whakaoti mō C
Tick mark Image

Tohaina

ϕ=555120NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 4500 ki te 123.36, ka 555120.
ϕ=555120NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 555120 ki te \frac{1}{10000}, ka \frac{6939}{125}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 18.5 ki te \frac{1}{100}, ka \frac{37}{200}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times 10^{-2}m}))
Whakawehea te 122 ki te 2, kia riro ko 61.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times \frac{1}{100}m}))
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{61}{100}m}))
Whakareatia te 61 ki te \frac{1}{100}, ka \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}}{\frac{61}{100}}))
Me whakakore tahi te m i te taurunga me te tauraro.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{200}\times \frac{100}{61}))
Whakawehe \frac{37}{200} ki te \frac{61}{100} mā te whakarea \frac{37}{200} ki te tau huripoki o \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))
Whakareatia te \frac{37}{200} ki te \frac{100}{61}, ka \frac{37}{122}.
\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))=ϕ
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N=ϕ
He hanga arowhānui tō te whārite.
\frac{\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Whakawehea ngā taha e rua ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Mā te whakawehe ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})) ka wetekia te whakareanga ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
Whakawehe ϕ ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).