Whakaoti mō N
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
C\neq 0\text{ and }m\neq 0
Whakaoti mō C
\left\{\begin{matrix}\\C\neq 0\text{, }&\text{unconditionally}\\C=\frac{846558\sqrt{16253}Nm^{2}}{2031625ϕ}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }ϕ\neq 0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
ϕ=555120NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 4500 ki te 123.36, ka 555120.
ϕ=555120NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 555120 ki te \frac{1}{10000}, ka \frac{6939}{125}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{122}{2}\times 10^{-2}m}))
Whakareatia te 18.5 ki te \frac{1}{100}, ka \frac{37}{200}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times 10^{-2}m}))
Whakawehea te 122 ki te 2, kia riro ko 61.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times \frac{1}{100}m}))
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{61}{100}m}))
Whakareatia te 61 ki te \frac{1}{100}, ka \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}}{\frac{61}{100}}))
Me whakakore tahi te m i te taurunga me te tauraro.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{200}\times \frac{100}{61}))
Whakawehe \frac{37}{200} ki te \frac{61}{100} mā te whakarea \frac{37}{200} ki te tau huripoki o \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))
Whakareatia te \frac{37}{200} ki te \frac{100}{61}, ka \frac{37}{122}.
\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))=ϕ
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N=ϕ
He hanga arowhānui tō te whārite.
\frac{\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Whakawehea ngā taha e rua ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Mā te whakawehe ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})) ka wetekia te whakareanga ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
Whakawehe ϕ ki te \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}