Whakaoti mō l (complex solution)
\left\{\begin{matrix}l=-\frac{5\left(5-x\right)}{3no\left(x-3\right)}\text{, }&n\neq 0\text{ and }o\neq 0\text{ and }x\neq 3\\l\in \mathrm{C}\text{, }&\left(o=0\text{ or }n=0\right)\text{ and }x=5\end{matrix}\right.
Whakaoti mō n (complex solution)
\left\{\begin{matrix}n=-\frac{5\left(5-x\right)}{3lo\left(x-3\right)}\text{, }&l\neq 0\text{ and }o\neq 0\text{ and }x\neq 3\\n\in \mathrm{C}\text{, }&\left(o=0\text{ or }l=0\right)\text{ and }x=5\end{matrix}\right.
Whakaoti mō l
\left\{\begin{matrix}l=-\frac{5\left(5-x\right)}{3no\left(x-3\right)}\text{, }&n\neq 0\text{ and }o\neq 0\text{ and }x\neq 3\\l\in \mathrm{R}\text{, }&\left(o=0\text{ or }n=0\right)\text{ and }x=5\end{matrix}\right.
Whakaoti mō n
\left\{\begin{matrix}n=-\frac{5\left(5-x\right)}{3lo\left(x-3\right)}\text{, }&l\neq 0\text{ and }o\neq 0\text{ and }x\neq 3\\n\in \mathrm{R}\text{, }&\left(o=0\text{ or }l=0\right)\text{ and }x=5\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
3lon\left(x-3\right)=5\left(x+1\right)-30
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3lonx-9lon=5\left(x+1\right)-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3lon ki te x-3.
3lonx-9lon=5x+5-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+1.
3lonx-9lon=5x-25
Tangohia te 30 i te 5, ka -25.
\left(3onx-9on\right)l=5x-25
Pahekotia ngā kīanga tau katoa e whai ana i te l.
\left(3nox-9no\right)l=5x-25
He hanga arowhānui tō te whārite.
\frac{\left(3nox-9no\right)l}{3nox-9no}=\frac{5x-25}{3nox-9no}
Whakawehea ngā taha e rua ki te 3nxo-9on.
l=\frac{5x-25}{3nox-9no}
Mā te whakawehe ki te 3nxo-9on ka wetekia te whakareanga ki te 3nxo-9on.
l=\frac{5\left(x-5\right)}{3no\left(x-3\right)}
Whakawehe -25+5x ki te 3nxo-9on.
3lon\left(x-3\right)=5\left(x+1\right)-30
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3lonx-9lno=5\left(x+1\right)-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3lon ki te x-3.
3lonx-9lno=5x+5-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+1.
3lonx-9lno=5x-25
Tangohia te 30 i te 5, ka -25.
\left(3lox-9lo\right)n=5x-25
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\frac{\left(3lox-9lo\right)n}{3lox-9lo}=\frac{5x-25}{3lox-9lo}
Whakawehea ngā taha e rua ki te 3lxo-9ol.
n=\frac{5x-25}{3lox-9lo}
Mā te whakawehe ki te 3lxo-9ol ka wetekia te whakareanga ki te 3lxo-9ol.
n=\frac{5\left(x-5\right)}{3lo\left(x-3\right)}
Whakawehe -25+5x ki te 3lxo-9ol.
3lon\left(x-3\right)=5\left(x+1\right)-30
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3lonx-9lon=5\left(x+1\right)-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3lon ki te x-3.
3lonx-9lon=5x+5-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+1.
3lonx-9lon=5x-25
Tangohia te 30 i te 5, ka -25.
\left(3onx-9on\right)l=5x-25
Pahekotia ngā kīanga tau katoa e whai ana i te l.
\left(3nox-9no\right)l=5x-25
He hanga arowhānui tō te whārite.
\frac{\left(3nox-9no\right)l}{3nox-9no}=\frac{5x-25}{3nox-9no}
Whakawehea ngā taha e rua ki te 3nxo-9on.
l=\frac{5x-25}{3nox-9no}
Mā te whakawehe ki te 3nxo-9on ka wetekia te whakareanga ki te 3nxo-9on.
l=\frac{5\left(x-5\right)}{3no\left(x-3\right)}
Whakawehe -25+5x ki te 3nxo-9on.
3lon\left(x-3\right)=5\left(x+1\right)-30
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3lonx-9lno=5\left(x+1\right)-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3lon ki te x-3.
3lonx-9lno=5x+5-30
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+1.
3lonx-9lno=5x-25
Tangohia te 30 i te 5, ka -25.
\left(3lox-9lo\right)n=5x-25
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\frac{\left(3lox-9lo\right)n}{3lox-9lo}=\frac{5x-25}{3lox-9lo}
Whakawehea ngā taha e rua ki te 3lxo-9ol.
n=\frac{5x-25}{3lox-9lo}
Mā te whakawehe ki te 3lxo-9ol ka wetekia te whakareanga ki te 3lxo-9ol.
n=\frac{5\left(x-5\right)}{3lo\left(x-3\right)}
Whakawehe -25+5x ki te 3lxo-9ol.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}