Whakaoti mō l (complex solution)
\left\{\begin{matrix}l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}\text{, }&x\neq \frac{\pi }{2}\text{ and }m\neq 0\text{ and }o\neq 0\\l\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ or }x=\frac{\pi }{2}\end{matrix}\right.
Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}\text{, }&x\neq \frac{\pi }{2}\text{ and }o\neq 0\text{ and }l\neq 0\\m\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ or }x=\frac{\pi }{2}\end{matrix}\right.
Whakaoti mō l
\left\{\begin{matrix}l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}\text{, }&x\neq \frac{\pi }{2}\text{ and }m\neq 0\text{ and }o\neq 0\\l\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ or }x=\frac{\pi }{2}\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}\text{, }&x\neq \frac{\pi }{2}\text{ and }l\neq 0\text{ and }o\neq 0\\m\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ or }x=\frac{\pi }{2}\end{matrix}\right.
Graph
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
\operatorname { lom } ( x - \frac { \pi } { 2 } ) = \cos x
Tohaina
Kua tāruatia ki te papatopenga
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2omx-\pi om\right)l=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te l.
\left(2mox-\pi mo\right)l=2\cos(x)
He hanga arowhānui tō te whārite.
\frac{\left(2mox-\pi mo\right)l}{2mox-\pi mo}=\frac{2\cos(x)}{2mox-\pi mo}
Whakawehea ngā taha e rua ki te 2mox-mo\pi .
l=\frac{2\cos(x)}{2mox-\pi mo}
Mā te whakawehe ki te 2mox-mo\pi ka wetekia te whakareanga ki te 2mox-mo\pi .
l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2mox-mo\pi .
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2lox-\pi lo\right)m=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\frac{\left(2lox-\pi lo\right)m}{2lox-\pi lo}=\frac{2\cos(x)}{2lox-\pi lo}
Whakawehea ngā taha e rua ki te 2olx-ol\pi .
m=\frac{2\cos(x)}{2lox-\pi lo}
Mā te whakawehe ki te 2olx-ol\pi ka wetekia te whakareanga ki te 2olx-ol\pi .
m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2olx-ol\pi .
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2omx-\pi om\right)l=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te l.
\left(2mox-\pi mo\right)l=2\cos(x)
He hanga arowhānui tō te whārite.
\frac{\left(2mox-\pi mo\right)l}{2mox-\pi mo}=\frac{2\cos(x)}{2mox-\pi mo}
Whakawehea ngā taha e rua ki te 2omx-\pi om.
l=\frac{2\cos(x)}{2mox-\pi mo}
Mā te whakawehe ki te 2omx-\pi om ka wetekia te whakareanga ki te 2omx-\pi om.
l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2omx-\pi om.
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2lox-\pi lo\right)m=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\frac{\left(2lox-\pi lo\right)m}{2lox-\pi lo}=\frac{2\cos(x)}{2lox-\pi lo}
Whakawehea ngā taha e rua ki te 2lox-\pi lo.
m=\frac{2\cos(x)}{2lox-\pi lo}
Mā te whakawehe ki te 2lox-\pi lo ka wetekia te whakareanga ki te 2lox-\pi lo.
m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2lox-\pi lo.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}