Tīpoka ki ngā ihirangi matua
Whakaoti mō l
Tick mark Image
Whakaoti mō m
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2omx-\pi om\right)l=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te l.
\left(2mox-\pi mo\right)l=2\cos(x)
He hanga arowhānui tō te whārite.
\frac{\left(2mox-\pi mo\right)l}{2mox-\pi mo}=\frac{2\cos(x)}{2mox-\pi mo}
Whakawehea ngā taha e rua ki te 2omx-\pi om.
l=\frac{2\cos(x)}{2mox-\pi mo}
Mā te whakawehe ki te 2omx-\pi om ka wetekia te whakareanga ki te 2omx-\pi om.
l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2omx-\pi om.
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Whakareatia ngā taha e rua o te whārite ki te 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Whakamahia te āhuatanga tohatoha hei whakarea te 2lom ki te x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Tuhia te 2\left(-\frac{\pi }{2}\right) hei hautanga kotahi.
2lomx-\pi lom=2\cos(x)
Me whakakore te 2 me te 2.
\left(2lox-\pi lo\right)m=2\cos(x)
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\frac{\left(2lox-\pi lo\right)m}{2lox-\pi lo}=\frac{2\cos(x)}{2lox-\pi lo}
Whakawehea ngā taha e rua ki te 2lox-\pi lo.
m=\frac{2\cos(x)}{2lox-\pi lo}
Mā te whakawehe ki te 2lox-\pi lo ka wetekia te whakareanga ki te 2lox-\pi lo.
m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}
Whakawehe 2\cos(x) ki te 2lox-\pi lo.