Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

hx\left(x-7\right)\left(x-1\right)=x^{2}+6^{x}-27
Whakareatia ngā taha e rua o te whārite ki te \left(x-7\right)\left(x-1\right).
\left(hx^{2}-7hx\right)\left(x-1\right)=x^{2}+6^{x}-27
Whakamahia te āhuatanga tohatoha hei whakarea te hx ki te x-7.
hx^{3}-8hx^{2}+7hx=x^{2}+6^{x}-27
Whakamahia te āhuatanga tuaritanga hei whakarea te hx^{2}-7hx ki te x-1 ka whakakotahi i ngā kupu rite.
\left(x^{3}-8x^{2}+7x\right)h=x^{2}+6^{x}-27
Pahekotia ngā kīanga tau katoa e whai ana i te h.
\frac{\left(x^{3}-8x^{2}+7x\right)h}{x^{3}-8x^{2}+7x}=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
Whakawehea ngā taha e rua ki te -8x^{2}+x^{3}+7x.
h=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
Mā te whakawehe ki te -8x^{2}+x^{3}+7x ka wetekia te whakareanga ki te -8x^{2}+x^{3}+7x.
h=\frac{x^{2}+6^{x}-27}{x\left(x-7\right)\left(x-1\right)}
Whakawehe x^{2}+6^{x}-27 ki te -8x^{2}+x^{3}+7x.