Whakaoti mō x
\left\{\begin{matrix}x=\frac{4\pi }{3}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }g=\pi n_{1}\\x\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }g=\pi n_{2}+\frac{\pi }{2}\end{matrix}\right.
Whakaoti mō g
\left\{\begin{matrix}\\g=\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\g\neq \pi n_{2}\text{, }\forall n_{2}\in \mathrm{Z}\text{, }&x=\frac{4\pi }{3}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3\cot(g) ki te 2x-\pi .
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 3\cot(g) ki te x+\frac{\pi }{3}.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
Tuhia te 3\times \frac{\pi }{3} hei hautanga kotahi.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
Me whakakore te 3 me te 3.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
Tangohia te 3\cot(g)x mai i ngā taha e rua.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
Pahekotia te 6\cot(g)x me -3\cot(g)x, ka 3\cot(g)x.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
Me tāpiri te 3\cot(g)\pi ki ngā taha e rua.
3\cot(g)x=4\pi \cot(g)
Pahekotia te \pi \cot(g) me 3\cot(g)\pi , ka 4\pi \cot(g).
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
Whakawehea ngā taha e rua ki te 3\cot(g).
x=\frac{4\pi \cot(g)}{3\cot(g)}
Mā te whakawehe ki te 3\cot(g) ka wetekia te whakareanga ki te 3\cot(g).
x=\frac{4\pi }{3}
Whakawehe 4\pi \cot(g) ki te 3\cot(g).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}