Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō g
Tick mark Image
Graph

Tohaina

3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3\cot(g) ki te 2x-\pi .
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 3\cot(g) ki te x+\frac{\pi }{3}.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
Tuhia te 3\times \frac{\pi }{3} hei hautanga kotahi.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
Me whakakore te 3 me te 3.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
Tangohia te 3\cot(g)x mai i ngā taha e rua.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
Pahekotia te 6\cot(g)x me -3\cot(g)x, ka 3\cot(g)x.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
Me tāpiri te 3\cot(g)\pi ki ngā taha e rua.
3\cot(g)x=4\pi \cot(g)
Pahekotia te \pi \cot(g) me 3\cot(g)\pi , ka 4\pi \cot(g).
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
Whakawehea ngā taha e rua ki te 3\cot(g).
x=\frac{4\pi \cot(g)}{3\cot(g)}
Mā te whakawehe ki te 3\cot(g) ka wetekia te whakareanga ki te 3\cot(g).
x=\frac{4\pi }{3}
Whakawehe 4\pi \cot(g) ki te 3\cot(g).