Tīpoka ki ngā ihirangi matua
Whakaoti mō I (complex solution)
Tick mark Image
Whakaoti mō I
Tick mark Image
Whakaoti mō R (complex solution)
Tick mark Image
Whakaoti mō R
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakareatia ngā taha e rua o te whārite ki te \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakareatia te R ki te R, ka R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakamahia te āhuatanga tohatoha hei whakarea te IR^{2} ki te r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Whakamahia te āhuatanga tohatoha hei whakarea te r^{2}+2r+1 ki te -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Tangohia te 18000 i te 22000, ka 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Pahekotia ngā kīanga tau katoa e whai ana i te I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
He hanga arowhānui tō te whārite.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Whakawehea ngā taha e rua ki te R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Mā te whakawehe ki te R^{2}r^{2}+2rR^{2}+R^{2} ka wetekia te whakareanga ki te R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
Whakawehe 4000-36000r-18000r^{2} ki te R^{2}r^{2}+2rR^{2}+R^{2}.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakareatia ngā taha e rua o te whārite ki te \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakareatia te R ki te R, ka R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Whakamahia te āhuatanga tohatoha hei whakarea te IR^{2} ki te r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Whakamahia te āhuatanga tohatoha hei whakarea te r^{2}+2r+1 ki te -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Tangohia te 18000 i te 22000, ka 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Pahekotia ngā kīanga tau katoa e whai ana i te I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
He hanga arowhānui tō te whārite.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Whakawehea ngā taha e rua ki te R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Mā te whakawehe ki te R^{2}r^{2}+2rR^{2}+R^{2} ka wetekia te whakareanga ki te R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
Whakawehe 4000-18000r^{2}-36000r ki te R^{2}r^{2}+2rR^{2}+R^{2}.