Whakaoti mō R
\left\{\begin{matrix}R=\frac{q\mu }{3U}\text{, }&U\neq 0\\R\in \mathrm{R}\text{, }&\left(\mu =0\text{ or }q=0\right)\text{ and }U=0\end{matrix}\right.
Whakaoti mō U
\left\{\begin{matrix}U=\frac{q\mu }{3R}\text{, }&R\neq 0\\U\in \mathrm{R}\text{, }&\left(\mu =0\text{ or }q=0\right)\text{ and }R=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
UR\times 3=\mu q
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3UR=q\mu
He hanga arowhānui tō te whārite.
\frac{3UR}{3U}=\frac{q\mu }{3U}
Whakawehea ngā taha e rua ki te 3U.
R=\frac{q\mu }{3U}
Mā te whakawehe ki te 3U ka wetekia te whakareanga ki te 3U.
UR\times 3=\mu q
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3RU=q\mu
He hanga arowhānui tō te whārite.
\frac{3RU}{3R}=\frac{q\mu }{3R}
Whakawehea ngā taha e rua ki te 3R.
U=\frac{q\mu }{3R}
Mā te whakawehe ki te 3R ka wetekia te whakareanga ki te 3R.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}