Whakaoti mō μ_y
\mu _{y}=-\frac{2}{3}\approx -0.666666667
Tautapa μ_y
\mu _{y}≔-\frac{2}{3}
Tohaina
Kua tāruatia ki te papatopenga
\mu _{y}=\frac{4\left(-2\right)}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Tuhia te \frac{4}{9}\left(-2\right) hei hautanga kotahi.
\mu _{y}=\frac{-8}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Whakareatia te 4 ki te -2, ka -8.
\mu _{y}=-\frac{8}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Ka taea te hautanga \frac{-8}{9} te tuhi anō ko -\frac{8}{9} mā te tango i te tohu tōraro.
\mu _{y}=-\frac{8}{9}+\frac{1}{3}\times 0+\frac{2}{9}\times 1
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\mu _{y}=-\frac{8}{9}+0+\frac{2}{9}\times 1
Whakareatia te \frac{1}{3} ki te 0, ka 0.
\mu _{y}=-\frac{8}{9}+\frac{2}{9}\times 1
Tāpirihia te -\frac{8}{9} ki te 0, ka -\frac{8}{9}.
\mu _{y}=-\frac{8}{9}+\frac{2}{9}
Whakareatia te \frac{2}{9} ki te 1, ka \frac{2}{9}.
\mu _{y}=\frac{-8+2}{9}
Tā te mea he rite te tauraro o -\frac{8}{9} me \frac{2}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\mu _{y}=\frac{-6}{9}
Tāpirihia te -8 ki te 2, ka -6.
\mu _{y}=-\frac{2}{3}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}