Aromātai
\frac{56}{195}\approx 0.287179487
Tauwehe
\frac{2 ^ {3} \cdot 7}{3 \cdot 5 \cdot 13} = 0.28717948717948716
Tohaina
Kua tāruatia ki te papatopenga
\lfloor \frac{\frac{-7}{15}+1+\frac{1}{5}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Whakawehea te 9 ki te 9, kia riro ko 1.
\lfloor \frac{-\frac{7}{15}+1+\frac{1}{5}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Ka taea te hautanga \frac{-7}{15} te tuhi anō ko -\frac{7}{15} mā te tango i te tohu tōraro.
\lfloor \frac{-\frac{7}{15}+\frac{15}{15}+\frac{1}{5}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Me tahuri te 1 ki te hautau \frac{15}{15}.
\lfloor \frac{\frac{-7+15}{15}+\frac{1}{5}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Tā te mea he rite te tauraro o -\frac{7}{15} me \frac{15}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\lfloor \frac{\frac{8}{15}+\frac{1}{5}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Tāpirihia te -7 ki te 15, ka 8.
\lfloor \frac{\frac{8}{15}+\frac{3}{15}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Ko te maha noa iti rawa atu o 15 me 5 ko 15. Me tahuri \frac{8}{15} me \frac{1}{5} ki te hautau me te tautūnga 15.
\lfloor \frac{\frac{8+3}{15}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Tā te mea he rite te tauraro o \frac{8}{15} me \frac{3}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\lfloor \frac{\frac{11}{15}}{7^{2}\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Tāpirihia te 8 ki te 3, ka 11.
\lfloor \frac{\frac{11}{15}}{49\times \frac{-1}{2}}\rfloor +\frac{251}{195}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\lfloor \frac{\frac{11}{15}}{49\left(-\frac{1}{2}\right)}\rfloor +\frac{251}{195}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\lfloor \frac{\frac{11}{15}}{\frac{49\left(-1\right)}{2}}\rfloor +\frac{251}{195}
Tuhia te 49\left(-\frac{1}{2}\right) hei hautanga kotahi.
\lfloor \frac{\frac{11}{15}}{\frac{-49}{2}}\rfloor +\frac{251}{195}
Whakareatia te 49 ki te -1, ka -49.
\lfloor \frac{\frac{11}{15}}{-\frac{49}{2}}\rfloor +\frac{251}{195}
Ka taea te hautanga \frac{-49}{2} te tuhi anō ko -\frac{49}{2} mā te tango i te tohu tōraro.
\lfloor \frac{11}{15}\left(-\frac{2}{49}\right)\rfloor +\frac{251}{195}
Whakawehe \frac{11}{15} ki te -\frac{49}{2} mā te whakarea \frac{11}{15} ki te tau huripoki o -\frac{49}{2}.
\lfloor \frac{11\left(-2\right)}{15\times 49}\rfloor +\frac{251}{195}
Me whakarea te \frac{11}{15} ki te -\frac{2}{49} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\lfloor \frac{-22}{735}\rfloor +\frac{251}{195}
Mahia ngā whakarea i roto i te hautanga \frac{11\left(-2\right)}{15\times 49}.
\lfloor -\frac{22}{735}\rfloor +\frac{251}{195}
Ka taea te hautanga \frac{-22}{735} te tuhi anō ko -\frac{22}{735} mā te tango i te tohu tōraro.
\lfloor -1+\frac{713}{735}\rfloor +\frac{251}{195}
Ka ritua te -22 mā te 735 ka puta ko -1 me te toenga 713. Tuhia anō te -\frac{22}{735} hei -1+\frac{713}{735}.
-1+\frac{251}{195}
Ko te papa o tētahi tau tūturu a ko te tau tōpū tino nui rawa he iti iho, he ōrite rānei ki a. Ko te papa o -1+\frac{713}{735} ko -1.
-\frac{195}{195}+\frac{251}{195}
Me tahuri te -1 ki te hautau -\frac{195}{195}.
\frac{-195+251}{195}
Tā te mea he rite te tauraro o -\frac{195}{195} me \frac{251}{195}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{56}{195}
Tāpirihia te -195 ki te 251, ka 56.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}