Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+5b=80
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+5b=80,a+b=49
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+5b=80
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-5b+80
Me tango 5b mai i ngā taha e rua o te whārite.
-5b+80+b=49
Whakakapia te -5b+80 mō te a ki tērā atu whārite, a+b=49.
-4b+80=49
Tāpiri -5b ki te b.
-4b=-31
Me tango 80 mai i ngā taha e rua o te whārite.
b=\frac{31}{4}
Whakawehea ngā taha e rua ki te -4.
a=-5\times \frac{31}{4}+80
Whakaurua te \frac{31}{4} mō b ki a=-5b+80. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{155}{4}+80
Whakareatia -5 ki te \frac{31}{4}.
a=\frac{165}{4}
Tāpiri 80 ki te -\frac{155}{4}.
a=\frac{165}{4},b=\frac{31}{4}
Kua oti te pūnaha te whakatau.
a+5b=80
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+5b=80,a+b=49
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}80\\49\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}1&5\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&1\end{matrix}\right))\left(\begin{matrix}80\\49\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-5}&-\frac{5}{1-5}\\-\frac{1}{1-5}&\frac{1}{1-5}\end{matrix}\right)\left(\begin{matrix}80\\49\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}80\\49\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 80+\frac{5}{4}\times 49\\\frac{1}{4}\times 80-\frac{1}{4}\times 49\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{165}{4}\\\frac{31}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{165}{4},b=\frac{31}{4}
Tangohia ngā huānga poukapa a me b.
a+5b=80
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+5b=80,a+b=49
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-a+5b-b=80-49
Me tango a+b=49 mai i a+5b=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5b-b=80-49
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4b=80-49
Tāpiri 5b ki te -b.
4b=31
Tāpiri 80 ki te -49.
b=\frac{31}{4}
Whakawehea ngā taha e rua ki te 4.
a+\frac{31}{4}=49
Whakaurua te \frac{31}{4} mō b ki a+b=49. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{165}{4}
Me tango \frac{31}{4} mai i ngā taha e rua o te whārite.
a=\frac{165}{4},b=\frac{31}{4}
Kua oti te pūnaha te whakatau.