Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+4y=1,x-6y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+4y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-4y+1
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-4y+1\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{4}{5}y+\frac{1}{5}
Whakareatia \frac{1}{5} ki te -4y+1.
-\frac{4}{5}y+\frac{1}{5}-6y=7
Whakakapia te \frac{-4y+1}{5} mō te x ki tērā atu whārite, x-6y=7.
-\frac{34}{5}y+\frac{1}{5}=7
Tāpiri -\frac{4y}{5} ki te -6y.
-\frac{34}{5}y=\frac{34}{5}
Me tango \frac{1}{5} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{34}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{5}\left(-1\right)+\frac{1}{5}
Whakaurua te -1 mō y ki x=-\frac{4}{5}y+\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+1}{5}
Whakareatia -\frac{4}{5} ki te -1.
x=1
Tāpiri \frac{1}{5} ki te \frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
5x+4y=1,x-6y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&4\\1&-6\end{matrix}\right))\left(\begin{matrix}5&4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&4\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{5\left(-6\right)-4}&-\frac{4}{5\left(-6\right)-4}\\-\frac{1}{5\left(-6\right)-4}&\frac{5}{5\left(-6\right)-4}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\\frac{1}{34}&-\frac{5}{34}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}+\frac{2}{17}\times 7\\\frac{1}{34}-\frac{5}{34}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
5x+4y=1,x-6y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+4y=1,5x+5\left(-6\right)y=5\times 7
Kia ōrite ai a 5x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5x+4y=1,5x-30y=35
Whakarūnātia.
5x-5x+4y+30y=1-35
Me tango 5x-30y=35 mai i 5x+4y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+30y=1-35
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
34y=1-35
Tāpiri 4y ki te 30y.
34y=-34
Tāpiri 1 ki te -35.
y=-1
Whakawehea ngā taha e rua ki te 34.
x-6\left(-1\right)=7
Whakaurua te -1 mō y ki x-6y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+6=7
Whakareatia -6 ki te -1.
x=1
Me tango 6 mai i ngā taha e rua o te whārite.
x=1,y=-1
Kua oti te pūnaha te whakatau.