Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=4,3x-y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
3\left(y+4\right)-y=7
Whakakapia te y+4 mō te x ki tērā atu whārite, 3x-y=7.
3y+12-y=7
Whakareatia 3 ki te y+4.
2y+12=7
Tāpiri 3y ki te -y.
2y=-5
Me tango 12 mai i ngā taha e rua o te whārite.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}+4
Whakaurua te -\frac{5}{2} mō y ki x=y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3}{2}
Tāpiri 4 ki te -\frac{5}{2}.
x=\frac{3}{2},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.
x-y=4,3x-y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\right)}&-\frac{-1}{-1-\left(-3\right)}\\-\frac{3}{-1-\left(-3\right)}&\frac{1}{-1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{3}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 4+\frac{1}{2}\times 7\\-\frac{3}{2}\times 4+\frac{1}{2}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{2},y=-\frac{5}{2}
Tangohia ngā huānga poukapa x me y.
x-y=4,3x-y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-3x-y+y=4-7
Me tango 3x-y=7 mai i x-y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-3x=4-7
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=4-7
Tāpiri x ki te -3x.
-2x=-3
Tāpiri 4 ki te -7.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te -2.
3\times \frac{3}{2}-y=7
Whakaurua te \frac{3}{2} mō x ki 3x-y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{9}{2}-y=7
Whakareatia 3 ki te \frac{3}{2}.
-y=\frac{5}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te -1.
x=\frac{3}{2},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.