Whakaoti mō x, y, z
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=\frac{1}{2}=0.5
z=2
Tohaina
Kua tāruatia ki te papatopenga
x=y+1
Me whakaoti te x-y=1 mō x.
2\left(y+1\right)+6y-5z=-4 y+1+y-z=0
Whakakapia te y+1 mō te x i te whārite tuarua me te tuatoru.
y=-\frac{3}{4}+\frac{5}{8}z z=2y+1
Me whakaoti ēnei whārite mō y me z takitahi.
z=2\left(-\frac{3}{4}+\frac{5}{8}z\right)+1
Whakakapia te -\frac{3}{4}+\frac{5}{8}z mō te y i te whārite z=2y+1.
z=2
Me whakaoti te z=2\left(-\frac{3}{4}+\frac{5}{8}z\right)+1 mō z.
y=-\frac{3}{4}+\frac{5}{8}\times 2
Whakakapia te 2 mō te z i te whārite y=-\frac{3}{4}+\frac{5}{8}z.
y=\frac{1}{2}
Tātaitia te y i te y=-\frac{3}{4}+\frac{5}{8}\times 2.
x=\frac{1}{2}+1
Whakakapia te \frac{1}{2} mō te y i te whārite x=y+1.
x=\frac{3}{2}
Tātaitia te x i te x=\frac{1}{2}+1.
x=\frac{3}{2} y=\frac{1}{2} z=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}