Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y=40,x+3y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+40
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+40\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+20
Whakareatia \frac{1}{2} ki te -y+40.
-\frac{1}{2}y+20+3y=40
Whakakapia te -\frac{y}{2}+20 mō te x ki tērā atu whārite, x+3y=40.
\frac{5}{2}y+20=40
Tāpiri -\frac{y}{2} ki te 3y.
\frac{5}{2}y=20
Me tango 20 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 8+20
Whakaurua te 8 mō y ki x=-\frac{1}{2}y+20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4+20
Whakareatia -\frac{1}{2} ki te 8.
x=16
Tāpiri 20 ki te -4.
x=16,y=8
Kua oti te pūnaha te whakatau.
2x+y=40,x+3y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}40\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}40\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}40\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-1}&-\frac{1}{2\times 3-1}\\-\frac{1}{2\times 3-1}&\frac{2}{2\times 3-1}\end{matrix}\right)\left(\begin{matrix}40\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}40\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 40-\frac{1}{5}\times 40\\-\frac{1}{5}\times 40+\frac{2}{5}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=16,y=8
Tangohia ngā huānga poukapa x me y.
2x+y=40,x+3y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+y=40,2x+2\times 3y=2\times 40
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+y=40,2x+6y=80
Whakarūnātia.
2x-2x+y-6y=40-80
Me tango 2x+6y=80 mai i 2x+y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-6y=40-80
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=40-80
Tāpiri y ki te -6y.
-5y=-40
Tāpiri 40 ki te -80.
y=8
Whakawehea ngā taha e rua ki te -5.
x+3\times 8=40
Whakaurua te 8 mō y ki x+3y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+24=40
Whakareatia 3 ki te 8.
x=16
Me tango 24 mai i ngā taha e rua o te whārite.
x=16,y=8
Kua oti te pūnaha te whakatau.