Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10x+2y=-78,-3x-2y=-29
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+2y=-78
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-2y-78
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-2y-78\right)
Whakawehea ngā taha e rua ki te 10.
x=-\frac{1}{5}y-\frac{39}{5}
Whakareatia \frac{1}{10} ki te -2y-78.
-3\left(-\frac{1}{5}y-\frac{39}{5}\right)-2y=-29
Whakakapia te \frac{-y-39}{5} mō te x ki tērā atu whārite, -3x-2y=-29.
\frac{3}{5}y+\frac{117}{5}-2y=-29
Whakareatia -3 ki te \frac{-y-39}{5}.
-\frac{7}{5}y+\frac{117}{5}=-29
Tāpiri \frac{3y}{5} ki te -2y.
-\frac{7}{5}y=-\frac{262}{5}
Me tango \frac{117}{5} mai i ngā taha e rua o te whārite.
y=\frac{262}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\times \frac{262}{7}-\frac{39}{5}
Whakaurua te \frac{262}{7} mō y ki x=-\frac{1}{5}y-\frac{39}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{262}{35}-\frac{39}{5}
Whakareatia -\frac{1}{5} ki te \frac{262}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{107}{7}
Tāpiri -\frac{39}{5} ki te -\frac{262}{35} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{107}{7},y=\frac{262}{7}
Kua oti te pūnaha te whakatau.
10x+2y=-78,-3x-2y=-29
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-78\\-29\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right))\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right))\left(\begin{matrix}-78\\-29\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&2\\-3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right))\left(\begin{matrix}-78\\-29\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&-2\end{matrix}\right))\left(\begin{matrix}-78\\-29\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{10\left(-2\right)-2\left(-3\right)}&-\frac{2}{10\left(-2\right)-2\left(-3\right)}\\-\frac{-3}{10\left(-2\right)-2\left(-3\right)}&\frac{10}{10\left(-2\right)-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-78\\-29\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-78\\-29\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-78\right)+\frac{1}{7}\left(-29\right)\\-\frac{3}{14}\left(-78\right)-\frac{5}{7}\left(-29\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{107}{7}\\\frac{262}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{107}{7},y=\frac{262}{7}
Tangohia ngā huānga poukapa x me y.
10x+2y=-78,-3x-2y=-29
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 10x-3\times 2y=-3\left(-78\right),10\left(-3\right)x+10\left(-2\right)y=10\left(-29\right)
Kia ōrite ai a 10x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
-30x-6y=234,-30x-20y=-290
Whakarūnātia.
-30x+30x-6y+20y=234+290
Me tango -30x-20y=-290 mai i -30x-6y=234 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+20y=234+290
Tāpiri -30x ki te 30x. Ka whakakore atu ngā kupu -30x me 30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14y=234+290
Tāpiri -6y ki te 20y.
14y=524
Tāpiri 234 ki te 290.
y=\frac{262}{7}
Whakawehea ngā taha e rua ki te 14.
-3x-2\times \frac{262}{7}=-29
Whakaurua te \frac{262}{7} mō y ki -3x-2y=-29. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x-\frac{524}{7}=-29
Whakareatia -2 ki te \frac{262}{7}.
-3x=\frac{321}{7}
Me tāpiri \frac{524}{7} ki ngā taha e rua o te whārite.
x=-\frac{107}{7}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{107}{7},y=\frac{262}{7}
Kua oti te pūnaha te whakatau.