Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x-y=-6,2x-3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=y-6
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\left(y-6\right)
Whakawehea ngā taha e rua ki te -1.
x=-y+6
Whakareatia -1 ki te y-6.
2\left(-y+6\right)-3y=-3
Whakakapia te -y+6 mō te x ki tērā atu whārite, 2x-3y=-3.
-2y+12-3y=-3
Whakareatia 2 ki te -y+6.
-5y+12=-3
Tāpiri -2y ki te -3y.
-5y=-15
Me tango 12 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -5.
x=-3+6
Whakaurua te 3 mō y ki x=-y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri 6 ki te -3.
x=3,y=3
Kua oti te pūnaha te whakatau.
-x-y=-6,2x-3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-\left(-2\right)}&-\frac{-1}{-\left(-3\right)-\left(-2\right)}\\-\frac{2}{-\left(-3\right)-\left(-2\right)}&-\frac{1}{-\left(-3\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-6\right)+\frac{1}{5}\left(-3\right)\\-\frac{2}{5}\left(-6\right)-\frac{1}{5}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=3
Tangohia ngā huānga poukapa x me y.
-x-y=-6,2x-3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-1\right)x+2\left(-1\right)y=2\left(-6\right),-2x-\left(-3y\right)=-\left(-3\right)
Kia ōrite ai a -x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-2x-2y=-12,-2x+3y=3
Whakarūnātia.
-2x+2x-2y-3y=-12-3
Me tango -2x+3y=3 mai i -2x-2y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-3y=-12-3
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-12-3
Tāpiri -2y ki te -3y.
-5y=-15
Tāpiri -12 ki te -3.
y=3
Whakawehea ngā taha e rua ki te -5.
2x-3\times 3=-3
Whakaurua te 3 mō y ki 2x-3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-9=-3
Whakareatia -3 ki te 3.
2x=6
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=3
Kua oti te pūnaha te whakatau.