Whakaoti mō x, y
x=-2
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-2y-x=-y
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o x+2y, kimihia te tauaro o ia taurangi.
-2x-2y=-y
Pahekotia te -x me -x, ka -2x.
-2x-2y+y=0
Me tāpiri te y ki ngā taha e rua.
-2x-y=0
Pahekotia te -2y me y, ka -y.
-3x-2y=-4-x
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
-3x-2y+x=-4
Me tāpiri te x ki ngā taha e rua.
-2x-2y=-4
Pahekotia te -3x me x, ka -2x.
-2x-y=0,-2x-2y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{2}y
Whakawehea ngā taha e rua ki te -2.
-2\left(-\frac{1}{2}\right)y-2y=-4
Whakakapia te -\frac{y}{2} mō te x ki tērā atu whārite, -2x-2y=-4.
y-2y=-4
Whakareatia -2 ki te -\frac{y}{2}.
-y=-4
Tāpiri y ki te -2y.
y=4
Whakawehea ngā taha e rua ki te -1.
x=-\frac{1}{2}\times 4
Whakaurua te 4 mō y ki x=-\frac{1}{2}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Whakareatia -\frac{1}{2} ki te 4.
x=-2,y=4
Kua oti te pūnaha te whakatau.
-x-2y-x=-y
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o x+2y, kimihia te tauaro o ia taurangi.
-2x-2y=-y
Pahekotia te -x me -x, ka -2x.
-2x-2y+y=0
Me tāpiri te y ki ngā taha e rua.
-2x-y=0
Pahekotia te -2y me y, ka -y.
-3x-2y=-4-x
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
-3x-2y+x=-4
Me tāpiri te x ki ngā taha e rua.
-2x-2y=-4
Pahekotia te -3x me x, ka -2x.
-2x-y=0,-2x-2y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right))\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-\left(-\left(-2\right)\right)}&-\frac{-1}{-2\left(-2\right)-\left(-\left(-2\right)\right)}\\-\frac{-2}{-2\left(-2\right)-\left(-\left(-2\right)\right)}&-\frac{2}{-2\left(-2\right)-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\1&-1\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-4\right)\\-\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=4
Tangohia ngā huānga poukapa x me y.
-x-2y-x=-y
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o x+2y, kimihia te tauaro o ia taurangi.
-2x-2y=-y
Pahekotia te -x me -x, ka -2x.
-2x-2y+y=0
Me tāpiri te y ki ngā taha e rua.
-2x-y=0
Pahekotia te -2y me y, ka -y.
-3x-2y=-4-x
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
-3x-2y+x=-4
Me tāpiri te x ki ngā taha e rua.
-2x-2y=-4
Pahekotia te -3x me x, ka -2x.
-2x-y=0,-2x-2y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x+2x-y+2y=4
Me tango -2x-2y=-4 mai i -2x-y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+2y=4
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=4
Tāpiri -y ki te 2y.
-2x-2\times 4=-4
Whakaurua te 4 mō y ki -2x-2y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-8=-4
Whakareatia -2 ki te 4.
-2x=4
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -2.
x=-2,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}