Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x+y=12,x-3y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+12
Me tango y mai i ngā taha e rua o te whārite.
-y+12-3y=0
Whakakapia te -y+12 mō te x ki tērā atu whārite, x-3y=0.
-4y+12=0
Tāpiri -y ki te -3y.
-4y=-12
Me tango 12 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -4.
x=-3+12
Whakaurua te 3 mō y ki x=-y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9
Tāpiri 12 ki te -3.
x=9,y=3
Kua oti te pūnaha te whakatau.
x-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x+y=12,x-3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}12\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}12\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}12\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-1}&-\frac{1}{-3-1}\\-\frac{1}{-3-1}&\frac{1}{-3-1}\end{matrix}\right)\left(\begin{matrix}12\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}12\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 12\\\frac{1}{4}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=3
Tangohia ngā huānga poukapa x me y.
x-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x+y=12,x-3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+3y=12
Me tango x-3y=0 mai i x+y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+3y=12
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=12
Tāpiri y ki te 3y.
y=3
Whakawehea ngā taha e rua ki te 4.
x-3\times 3=0
Whakaurua te 3 mō y ki x-3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-9=0
Whakareatia -3 ki te 3.
x=9
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=9,y=3
Kua oti te pūnaha te whakatau.