Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

27+4y=-4x+3
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
27+4y+4x=3
Me tāpiri te 4x ki ngā taha e rua.
4y+4x=3-27
Tangohia te 27 mai i ngā taha e rua.
4y+4x=-24
Tangohia te 27 i te 3, ka -24.
8x+3y=-8
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4y+4x=-24,3y+8x=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4y+4x=-24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
4y=-4x-24
Me tango 4x mai i ngā taha e rua o te whārite.
y=\frac{1}{4}\left(-4x-24\right)
Whakawehea ngā taha e rua ki te 4.
y=-x-6
Whakareatia \frac{1}{4} ki te -4x-24.
3\left(-x-6\right)+8x=-8
Whakakapia te -x-6 mō te y ki tērā atu whārite, 3y+8x=-8.
-3x-18+8x=-8
Whakareatia 3 ki te -x-6.
5x-18=-8
Tāpiri -3x ki te 8x.
5x=10
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 5.
y=-2-6
Whakaurua te 2 mō x ki y=-x-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-8
Tāpiri -6 ki te -2.
y=-8,x=2
Kua oti te pūnaha te whakatau.
27+4y=-4x+3
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
27+4y+4x=3
Me tāpiri te 4x ki ngā taha e rua.
4y+4x=3-27
Tangohia te 27 mai i ngā taha e rua.
4y+4x=-24
Tangohia te 27 i te 3, ka -24.
8x+3y=-8
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4y+4x=-24,3y+8x=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&4\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-24\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}4&4\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&4\\3&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{4\times 8-4\times 3}&-\frac{4}{4\times 8-4\times 3}\\-\frac{3}{4\times 8-4\times 3}&\frac{4}{4\times 8-4\times 3}\end{matrix}\right)\left(\begin{matrix}-24\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{20}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-24\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-24\right)-\frac{1}{5}\left(-8\right)\\-\frac{3}{20}\left(-24\right)+\frac{1}{5}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=-8,x=2
Tangohia ngā huānga poukapa y me x.
27+4y=-4x+3
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
27+4y+4x=3
Me tāpiri te 4x ki ngā taha e rua.
4y+4x=3-27
Tangohia te 27 mai i ngā taha e rua.
4y+4x=-24
Tangohia te 27 i te 3, ka -24.
8x+3y=-8
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4y+4x=-24,3y+8x=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4y+3\times 4x=3\left(-24\right),4\times 3y+4\times 8x=4\left(-8\right)
Kia ōrite ai a 4y me 3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12y+12x=-72,12y+32x=-32
Whakarūnātia.
12y-12y+12x-32x=-72+32
Me tango 12y+32x=-32 mai i 12y+12x=-72 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12x-32x=-72+32
Tāpiri 12y ki te -12y. Ka whakakore atu ngā kupu 12y me -12y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-20x=-72+32
Tāpiri 12x ki te -32x.
-20x=-40
Tāpiri -72 ki te 32.
x=2
Whakawehea ngā taha e rua ki te -20.
3y+8\times 2=-8
Whakaurua te 2 mō x ki 3y+8x=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y+16=-8
Whakareatia 8 ki te 2.
3y=-24
Me tango 16 mai i ngā taha e rua o te whārite.
y=-8
Whakawehea ngā taha e rua ki te 3.
y=-8,x=2
Kua oti te pūnaha te whakatau.