Whakaoti mō x_1, x_2, x_3
x_{1}=2
x_{2}=3
x_{3}=-4
Tohaina
Kua tāruatia ki te papatopenga
x_{1}=-2x_{2}-x_{3}+4
Me whakaoti te x_{1}+2x_{2}+x_{3}=4 mō x_{1}.
3\left(-2x_{2}-x_{3}+4\right)-4x_{2}-2x_{3}=2 5\left(-2x_{2}-x_{3}+4\right)+3x_{2}+5x_{3}=-1
Whakakapia te -2x_{2}-x_{3}+4 mō te x_{1} i te whārite tuarua me te tuatoru.
x_{3}=2-2x_{2} x_{2}=3
Me whakaoti ēnei whārite mō x_{3} me x_{2} takitahi.
x_{3}=2-2\times 3
Whakakapia te 3 mō te x_{2} i te whārite x_{3}=2-2x_{2}.
x_{3}=-4
Tātaitia te x_{3} i te x_{3}=2-2\times 3.
x_{1}=-2\times 3-\left(-4\right)+4
Whakakapia te -4 mō te x_{3} me te 3 mō x_{2} i te whārite x_{1}=-2x_{2}-x_{3}+4.
x_{1}=2
Tātaitia te x_{1} i te x_{1}=-2\times 3-\left(-4\right)+4.
x_{1}=2 x_{2}=3 x_{3}=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}