Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\log_{10}\left(-2\right),x-2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x=\log_{10}\left(-2\right)
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=\log(e)\left(\ln(2)+\pi i\right)
Whakawehea ngā taha e rua ki te 1.
\log(e)\left(\ln(2)+\pi i\right)-2y=6
Whakakapia te \left(\ln(2)+i\pi \right)\log(e) mō te x ki tērā atu whārite, x-2y=6.
-2y=\log(e)\left(-\pi i+\ln(500000)\right)
Me tango \left(\ln(2)+i\pi \right)\log(e) mai i ngā taha e rua o te whārite.
y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Whakawehea ngā taha e rua ki te -2.
x=\log(e)\left(\ln(2)+\pi i\right),y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Kua oti te pūnaha te whakatau.