Whakaoti mō x, y (complex solution)
x=\log(e)\left(\ln(2)+\pi i\right)\approx 0.301029996+1.364376354i
y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}\approx -2.849485002+0.682188177i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\log_{10}\left(-2\right),x-2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x=\log_{10}\left(-2\right)
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=\log(e)\left(\ln(2)+\pi i\right)
Whakawehea ngā taha e rua ki te 1.
\log(e)\left(\ln(2)+\pi i\right)-2y=6
Whakakapia te \left(\ln(2)+i\pi \right)\log(e) mō te x ki tērā atu whārite, x-2y=6.
-2y=\log(e)\left(-\pi i+\ln(500000)\right)
Me tango \left(\ln(2)+i\pi \right)\log(e) mai i ngā taha e rua o te whārite.
y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Whakawehea ngā taha e rua ki te -2.
x=\log(e)\left(\ln(2)+\pi i\right),y=-\frac{\log(e)\left(-\pi i+\ln(500000)\right)}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}