Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=64,-0.12x+0.26y=0.19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+64
Me tango y mai i ngā taha e rua o te whārite.
-0.12\left(-y+64\right)+0.26y=0.19
Whakakapia te -y+64 mō te x ki tērā atu whārite, -0.12x+0.26y=0.19.
0.12y-7.68+0.26y=0.19
Whakareatia -0.12 ki te -y+64.
0.38y-7.68=0.19
Tāpiri \frac{3y}{25} ki te \frac{13y}{50}.
0.38y=7.87
Me tāpiri 7.68 ki ngā taha e rua o te whārite.
y=\frac{787}{38}
Whakawehea ngā taha e rua o te whārite ki te 0.38, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{787}{38}+64
Whakaurua te \frac{787}{38} mō y ki x=-y+64. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1645}{38}
Tāpiri 64 ki te -\frac{787}{38}.
x=\frac{1645}{38},y=\frac{787}{38}
Kua oti te pūnaha te whakatau.
x+y=64,-0.12x+0.26y=0.19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\0.19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.26}{0.26-\left(-0.12\right)}&-\frac{1}{0.26-\left(-0.12\right)}\\-\frac{-0.12}{0.26-\left(-0.12\right)}&\frac{1}{0.26-\left(-0.12\right)}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&-\frac{50}{19}\\\frac{6}{19}&\frac{50}{19}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64-\frac{50}{19}\times 0.19\\\frac{6}{19}\times 64+\frac{50}{19}\times 0.19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1645}{38}\\\frac{787}{38}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1645}{38},y=\frac{787}{38}
Tangohia ngā huānga poukapa x me y.
x+y=64,-0.12x+0.26y=0.19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-0.12x-0.12y=-0.12\times 64,-0.12x+0.26y=0.19
Kia ōrite ai a x me -\frac{3x}{25}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -0.12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-0.12x-0.12y=-7.68,-0.12x+0.26y=0.19
Whakarūnātia.
-0.12x+0.12x-0.12y-0.26y=-7.68-0.19
Me tango -0.12x+0.26y=0.19 mai i -0.12x-0.12y=-7.68 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.12y-0.26y=-7.68-0.19
Tāpiri -\frac{3x}{25} ki te \frac{3x}{25}. Ka whakakore atu ngā kupu -\frac{3x}{25} me \frac{3x}{25}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.38y=-7.68-0.19
Tāpiri -\frac{3y}{25} ki te -\frac{13y}{50}.
-0.38y=-7.87
Tāpiri -7.68 ki te -0.19 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{787}{38}
Whakawehea ngā taha e rua o te whārite ki te -0.38, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-0.12x+0.26\times \frac{787}{38}=0.19
Whakaurua te \frac{787}{38} mō y ki -0.12x+0.26y=0.19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-0.12x+\frac{10231}{1900}=0.19
Whakareatia 0.26 ki te \frac{787}{38} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-0.12x=-\frac{987}{190}
Me tango \frac{10231}{1900} mai i ngā taha e rua o te whārite.
x=\frac{1645}{38}
Whakawehea ngā taha e rua o te whārite ki te -0.12, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1645}{38},y=\frac{787}{38}
Kua oti te pūnaha te whakatau.