Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-3x=-3
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x+2y=8,-3x+y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+8
Me tango 2y mai i ngā taha e rua o te whārite.
-3\left(-2y+8\right)+y=-3
Whakakapia te -2y+8 mō te x ki tērā atu whārite, -3x+y=-3.
6y-24+y=-3
Whakareatia -3 ki te -2y+8.
7y-24=-3
Tāpiri 6y ki te y.
7y=21
Me tāpiri 24 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 7.
x=-2\times 3+8
Whakaurua te 3 mō y ki x=-2y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6+8
Whakareatia -2 ki te 3.
x=2
Tāpiri 8 ki te -6.
x=2,y=3
Kua oti te pūnaha te whakatau.
y-3x=-3
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x+2y=8,-3x+y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-3\right)}&-\frac{2}{1-2\left(-3\right)}\\-\frac{-3}{1-2\left(-3\right)}&\frac{1}{1-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{2}{7}\\\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}8\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 8-\frac{2}{7}\left(-3\right)\\\frac{3}{7}\times 8+\frac{1}{7}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
y-3x=-3
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
x+2y=8,-3x+y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-3\times 2y=-3\times 8,-3x+y=-3
Kia ōrite ai a x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3x-6y=-24,-3x+y=-3
Whakarūnātia.
-3x+3x-6y-y=-24+3
Me tango -3x+y=-3 mai i -3x-6y=-24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-y=-24+3
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-24+3
Tāpiri -6y ki te -y.
-7y=-21
Tāpiri -24 ki te 3.
y=3
Whakawehea ngā taha e rua ki te -7.
-3x+3=-3
Whakaurua te 3 mō y ki -3x+y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x=-6
Me tango 3 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -3.
x=2,y=3
Kua oti te pūnaha te whakatau.