Whakaoti mō x, y
x=1
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+2y=3+3y+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1+y.
x+2y=4+3y
Tāpirihia te 3 ki te 1, ka 4.
x+2y-3y=4
Tangohia te 3y mai i ngā taha e rua.
x-y=4
Pahekotia te 2y me -3y, ka -y.
8-y=2-2y+3x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-y.
8-y+2y=2+3x
Me tāpiri te 2y ki ngā taha e rua.
8+y=2+3x
Pahekotia te -y me 2y, ka y.
8+y-3x=2
Tangohia te 3x mai i ngā taha e rua.
y-3x=2-8
Tangohia te 8 mai i ngā taha e rua.
y-3x=-6
Tangohia te 8 i te 2, ka -6.
x-y=4,-3x+y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
-3\left(y+4\right)+y=-6
Whakakapia te y+4 mō te x ki tērā atu whārite, -3x+y=-6.
-3y-12+y=-6
Whakareatia -3 ki te y+4.
-2y-12=-6
Tāpiri -3y ki te y.
-2y=6
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te -2.
x=-3+4
Whakaurua te -3 mō y ki x=y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri 4 ki te -3.
x=1,y=-3
Kua oti te pūnaha te whakatau.
x+2y=3+3y+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1+y.
x+2y=4+3y
Tāpirihia te 3 ki te 1, ka 4.
x+2y-3y=4
Tangohia te 3y mai i ngā taha e rua.
x-y=4
Pahekotia te 2y me -3y, ka -y.
8-y=2-2y+3x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-y.
8-y+2y=2+3x
Me tāpiri te 2y ki ngā taha e rua.
8+y=2+3x
Pahekotia te -y me 2y, ka y.
8+y-3x=2
Tangohia te 3x mai i ngā taha e rua.
y-3x=2-8
Tangohia te 8 mai i ngā taha e rua.
y-3x=-6
Tangohia te 8 i te 2, ka -6.
x-y=4,-3x+y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\left(-3\right)\right)}&-\frac{-1}{1-\left(-\left(-3\right)\right)}\\-\frac{-3}{1-\left(-\left(-3\right)\right)}&\frac{1}{1-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 4-\frac{1}{2}\left(-6\right)\\-\frac{3}{2}\times 4-\frac{1}{2}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-3
Tangohia ngā huānga poukapa x me y.
x+2y=3+3y+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1+y.
x+2y=4+3y
Tāpirihia te 3 ki te 1, ka 4.
x+2y-3y=4
Tangohia te 3y mai i ngā taha e rua.
x-y=4
Pahekotia te 2y me -3y, ka -y.
8-y=2-2y+3x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-y.
8-y+2y=2+3x
Me tāpiri te 2y ki ngā taha e rua.
8+y=2+3x
Pahekotia te -y me 2y, ka y.
8+y-3x=2
Tangohia te 3x mai i ngā taha e rua.
y-3x=2-8
Tangohia te 8 mai i ngā taha e rua.
y-3x=-6
Tangohia te 8 i te 2, ka -6.
x-y=4,-3x+y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-3\left(-1\right)y=-3\times 4,-3x+y=-6
Kia ōrite ai a x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3x+3y=-12,-3x+y=-6
Whakarūnātia.
-3x+3x+3y-y=-12+6
Me tango -3x+y=-6 mai i -3x+3y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-y=-12+6
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-12+6
Tāpiri 3y ki te -y.
2y=-6
Tāpiri -12 ki te 6.
y=-3
Whakawehea ngā taha e rua ki te 2.
-3x-3=-6
Whakaurua te -3 mō y ki -3x+y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x=-3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}