Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=-2y-3z+6
Me whakaoti te x+2y+3z=6 mō x.
2\left(-2y-3z+6\right)-3y+2z=14 3\left(-2y-3z+6\right)+y-z=-2
Whakakapia te -2y-3z+6 mō te x i te whārite tuarua me te tuatoru.
y=-\frac{2}{7}-\frac{4}{7}z z=2-\frac{1}{2}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=2-\frac{1}{2}\left(-\frac{2}{7}-\frac{4}{7}z\right)
Whakakapia te -\frac{2}{7}-\frac{4}{7}z mō te y i te whārite z=2-\frac{1}{2}y.
z=3
Me whakaoti te z=2-\frac{1}{2}\left(-\frac{2}{7}-\frac{4}{7}z\right) mō z.
y=-\frac{2}{7}-\frac{4}{7}\times 3
Whakakapia te 3 mō te z i te whārite y=-\frac{2}{7}-\frac{4}{7}z.
y=-2
Tātaitia te y i te y=-\frac{2}{7}-\frac{4}{7}\times 3.
x=-2\left(-2\right)-3\times 3+6
Whakakapia te -2 mō te y me te 3 mō z i te whārite x=-2y-3z+6.
x=1
Tātaitia te x i te x=-2\left(-2\right)-3\times 3+6.
x=1 y=-2 z=3
Kua oti te pūnaha te whakatau.