Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}\\x\in \mathrm{C}\text{, }y=-1\text{, }&\text{unconditionally}\\x=\frac{c-6}{c}\text{, }y=1\text{, }&c\neq 0\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}\\x\in \mathrm{R}\text{, }y=-1\text{, }&\text{unconditionally}\\x=\frac{c-6}{c}\text{, }y=1\text{, }&c\neq 0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
cy-c=0,3y+cx+3-c=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
cy-c=0
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
cy=c
Me tāpiri c ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te c.
3+cx+3-c=0
Whakakapia te 1 mō te y ki tērā atu whārite, 3y+cx+3-c=0.
cx+6-c=0
Tāpiri 3 ki te 3-c.
cx=c-6
Me tango 6-c mai i ngā taha e rua o te whārite.
x=\frac{c-6}{c}
Whakawehea ngā taha e rua ki te c.
y=1,x=\frac{c-6}{c}
Kua oti te pūnaha te whakatau.
cy-c=0,3y+cx+3-c=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
cy-c=0
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
cy=c
Me tāpiri c ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te c.
3+cx+3-c=0
Whakakapia te 1 mō te y ki tērā atu whārite, 3y+cx+3-c=0.
cx+6-c=0
Tāpiri 3 ki te 3-c.
cx=c-6
Me tango 6-c mai i ngā taha e rua o te whārite.
x=\frac{c-6}{c}
Whakawehea ngā taha e rua ki te c.
y=1,x=\frac{c-6}{c}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}