Whakaoti mō x, y
x=6
y=8.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
70x+190y=2035,x+y=14.5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
70x+190y=2035
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
70x=-190y+2035
Me tango 190y mai i ngā taha e rua o te whārite.
x=\frac{1}{70}\left(-190y+2035\right)
Whakawehea ngā taha e rua ki te 70.
x=-\frac{19}{7}y+\frac{407}{14}
Whakareatia \frac{1}{70} ki te -190y+2035.
-\frac{19}{7}y+\frac{407}{14}+y=14.5
Whakakapia te -\frac{19y}{7}+\frac{407}{14} mō te x ki tērā atu whārite, x+y=14.5.
-\frac{12}{7}y+\frac{407}{14}=14.5
Tāpiri -\frac{19y}{7} ki te y.
-\frac{12}{7}y=-\frac{102}{7}
Me tango \frac{407}{14} mai i ngā taha e rua o te whārite.
y=\frac{17}{2}
Whakawehea ngā taha e rua o te whārite ki te -\frac{12}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{19}{7}\times \frac{17}{2}+\frac{407}{14}
Whakaurua te \frac{17}{2} mō y ki x=-\frac{19}{7}y+\frac{407}{14}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-323+407}{14}
Whakareatia -\frac{19}{7} ki te \frac{17}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6
Tāpiri \frac{407}{14} ki te -\frac{323}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=\frac{17}{2}
Kua oti te pūnaha te whakatau.
70x+190y=2035,x+y=14.5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}70&190\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}70&190\\1&1\end{matrix}\right))\left(\begin{matrix}70&190\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}70&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}70&190\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}70&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}70&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{70-190}&-\frac{190}{70-190}\\-\frac{1}{70-190}&\frac{70}{70-190}\end{matrix}\right)\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{120}&\frac{19}{12}\\\frac{1}{120}&-\frac{7}{12}\end{matrix}\right)\left(\begin{matrix}2035\\14.5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{120}\times 2035+\frac{19}{12}\times 14.5\\\frac{1}{120}\times 2035-\frac{7}{12}\times 14.5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\\frac{17}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=\frac{17}{2}
Tangohia ngā huānga poukapa x me y.
70x+190y=2035,x+y=14.5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
70x+190y=2035,70x+70y=70\times 14.5
Kia ōrite ai a 70x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 70.
70x+190y=2035,70x+70y=1015
Whakarūnātia.
70x-70x+190y-70y=2035-1015
Me tango 70x+70y=1015 mai i 70x+190y=2035 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
190y-70y=2035-1015
Tāpiri 70x ki te -70x. Ka whakakore atu ngā kupu 70x me -70x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
120y=2035-1015
Tāpiri 190y ki te -70y.
120y=1020
Tāpiri 2035 ki te -1015.
y=\frac{17}{2}
Whakawehea ngā taha e rua ki te 120.
x+\frac{17}{2}=14.5
Whakaurua te \frac{17}{2} mō y ki x+y=14.5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6
Me tango \frac{17}{2} mai i ngā taha e rua o te whārite.
x=6,y=\frac{17}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}