Whakaoti mō x, y
x=-\frac{1}{14}\approx -0.071428571
y = \frac{102}{7} = 14\frac{4}{7} \approx 14.571428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
60x+60y=870,70x+140y=2035
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
60x+60y=870
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
60x=-60y+870
Me tango 60y mai i ngā taha e rua o te whārite.
x=\frac{1}{60}\left(-60y+870\right)
Whakawehea ngā taha e rua ki te 60.
x=-y+\frac{29}{2}
Whakareatia \frac{1}{60} ki te -60y+870.
70\left(-y+\frac{29}{2}\right)+140y=2035
Whakakapia te -y+\frac{29}{2} mō te x ki tērā atu whārite, 70x+140y=2035.
-70y+1015+140y=2035
Whakareatia 70 ki te -y+\frac{29}{2}.
70y+1015=2035
Tāpiri -70y ki te 140y.
70y=1020
Me tango 1015 mai i ngā taha e rua o te whārite.
y=\frac{102}{7}
Whakawehea ngā taha e rua ki te 70.
x=-\frac{102}{7}+\frac{29}{2}
Whakaurua te \frac{102}{7} mō y ki x=-y+\frac{29}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{14}
Tāpiri \frac{29}{2} ki te -\frac{102}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{14},y=\frac{102}{7}
Kua oti te pūnaha te whakatau.
60x+60y=870,70x+140y=2035
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}60&60\\70&140\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}870\\2035\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}60&60\\70&140\end{matrix}\right))\left(\begin{matrix}60&60\\70&140\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60\\70&140\end{matrix}\right))\left(\begin{matrix}870\\2035\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}60&60\\70&140\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60\\70&140\end{matrix}\right))\left(\begin{matrix}870\\2035\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&60\\70&140\end{matrix}\right))\left(\begin{matrix}870\\2035\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{140}{60\times 140-60\times 70}&-\frac{60}{60\times 140-60\times 70}\\-\frac{70}{60\times 140-60\times 70}&\frac{60}{60\times 140-60\times 70}\end{matrix}\right)\left(\begin{matrix}870\\2035\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&-\frac{1}{70}\\-\frac{1}{60}&\frac{1}{70}\end{matrix}\right)\left(\begin{matrix}870\\2035\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\times 870-\frac{1}{70}\times 2035\\-\frac{1}{60}\times 870+\frac{1}{70}\times 2035\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\\\frac{102}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{14},y=\frac{102}{7}
Tangohia ngā huānga poukapa x me y.
60x+60y=870,70x+140y=2035
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
70\times 60x+70\times 60y=70\times 870,60\times 70x+60\times 140y=60\times 2035
Kia ōrite ai a 60x me 70x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 70 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 60.
4200x+4200y=60900,4200x+8400y=122100
Whakarūnātia.
4200x-4200x+4200y-8400y=60900-122100
Me tango 4200x+8400y=122100 mai i 4200x+4200y=60900 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4200y-8400y=60900-122100
Tāpiri 4200x ki te -4200x. Ka whakakore atu ngā kupu 4200x me -4200x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4200y=60900-122100
Tāpiri 4200y ki te -8400y.
-4200y=-61200
Tāpiri 60900 ki te -122100.
y=\frac{102}{7}
Whakawehea ngā taha e rua ki te -4200.
70x+140\times \frac{102}{7}=2035
Whakaurua te \frac{102}{7} mō y ki 70x+140y=2035. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
70x+2040=2035
Whakareatia 140 ki te \frac{102}{7}.
70x=-5
Me tango 2040 mai i ngā taha e rua o te whārite.
x=-\frac{1}{14}
Whakawehea ngā taha e rua ki te 70.
x=-\frac{1}{14},y=\frac{102}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}