Whakaoti mō x, y
x=4
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
6.3x-4.1y=-3.5,-8.7x+3.8y=-8.2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6.3x-4.1y=-3.5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6.3x=4.1y-3.5
Me tāpiri \frac{41y}{10} ki ngā taha e rua o te whārite.
x=\frac{10}{63}\left(4.1y-3.5\right)
Whakawehea ngā taha e rua o te whārite ki te 6.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{41}{63}y-\frac{5}{9}
Whakareatia \frac{10}{63} ki te \frac{41y}{10}-3.5.
-8.7\left(\frac{41}{63}y-\frac{5}{9}\right)+3.8y=-8.2
Whakakapia te \frac{41y}{63}-\frac{5}{9} mō te x ki tērā atu whārite, -8.7x+3.8y=-8.2.
-\frac{1189}{210}y+\frac{29}{6}+3.8y=-8.2
Whakareatia -8.7 ki te \frac{41y}{63}-\frac{5}{9}.
-\frac{391}{210}y+\frac{29}{6}=-8.2
Tāpiri -\frac{1189y}{210} ki te \frac{19y}{5}.
-\frac{391}{210}y=-\frac{391}{30}
Me tango \frac{29}{6} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{391}{210}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{41}{63}\times 7-\frac{5}{9}
Whakaurua te 7 mō y ki x=\frac{41}{63}y-\frac{5}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{41-5}{9}
Whakareatia \frac{41}{63} ki te 7.
x=4
Tāpiri -\frac{5}{9} ki te \frac{41}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=7
Kua oti te pūnaha te whakatau.
6.3x-4.1y=-3.5,-8.7x+3.8y=-8.2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right))\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right))\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right))\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6.3&-4.1\\-8.7&3.8\end{matrix}\right))\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3.8}{6.3\times 3.8-\left(-4.1\left(-8.7\right)\right)}&-\frac{-4.1}{6.3\times 3.8-\left(-4.1\left(-8.7\right)\right)}\\-\frac{-8.7}{6.3\times 3.8-\left(-4.1\left(-8.7\right)\right)}&\frac{6.3}{6.3\times 3.8-\left(-4.1\left(-8.7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{380}{1173}&-\frac{410}{1173}\\-\frac{290}{391}&-\frac{210}{391}\end{matrix}\right)\left(\begin{matrix}-3.5\\-8.2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{380}{1173}\left(-3.5\right)-\frac{410}{1173}\left(-8.2\right)\\-\frac{290}{391}\left(-3.5\right)-\frac{210}{391}\left(-8.2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=7
Tangohia ngā huānga poukapa x me y.
6.3x-4.1y=-3.5,-8.7x+3.8y=-8.2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8.7\times 6.3x-8.7\left(-4.1\right)y=-8.7\left(-3.5\right),6.3\left(-8.7\right)x+6.3\times 3.8y=6.3\left(-8.2\right)
Kia ōrite ai a \frac{63x}{10} me -\frac{87x}{10}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8.7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.3.
-54.81x+35.67y=30.45,-54.81x+23.94y=-51.66
Whakarūnātia.
-54.81x+54.81x+35.67y-23.94y=30.45+51.66
Me tango -54.81x+23.94y=-51.66 mai i -54.81x+35.67y=30.45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35.67y-23.94y=30.45+51.66
Tāpiri -\frac{5481x}{100} ki te \frac{5481x}{100}. Ka whakakore atu ngā kupu -\frac{5481x}{100} me \frac{5481x}{100}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11.73y=30.45+51.66
Tāpiri \frac{3567y}{100} ki te -\frac{1197y}{50}.
11.73y=82.11
Tāpiri 30.45 ki te 51.66 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=7
Whakawehea ngā taha e rua o te whārite ki te 11.73, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-8.7x+3.8\times 7=-8.2
Whakaurua te 7 mō y ki -8.7x+3.8y=-8.2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8.7x+26.6=-8.2
Whakareatia 3.8 ki te 7.
-8.7x=-34.8
Me tango 26.6 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua o te whārite ki te -8.7, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=4,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}