Whakaoti mō x, y, z
x=-3
y=3
z=2
Tohaina
Kua tāruatia ki te papatopenga
y=6x+2z+17
Me whakaoti te 6x-y+2z=-17 mō y.
x+2\left(6x+2z+17\right)-z=1 2x+2\left(6x+2z+17\right)-3z=-6
Whakakapia te 6x+2z+17 mō te y i te whārite tuarua me te tuatoru.
x=-\frac{33}{13}-\frac{3}{13}z z=-40-14x
Me whakaoti ēnei whārite mō x me z takitahi.
z=-40-14\left(-\frac{33}{13}-\frac{3}{13}z\right)
Whakakapia te -\frac{33}{13}-\frac{3}{13}z mō te x i te whārite z=-40-14x.
z=2
Me whakaoti te z=-40-14\left(-\frac{33}{13}-\frac{3}{13}z\right) mō z.
x=-\frac{33}{13}-\frac{3}{13}\times 2
Whakakapia te 2 mō te z i te whārite x=-\frac{33}{13}-\frac{3}{13}z.
x=-3
Tātaitia te x i te x=-\frac{33}{13}-\frac{3}{13}\times 2.
y=6\left(-3\right)+2\times 2+17
Whakakapia te -3 mō te x me te 2 mō z i te whārite y=6x+2z+17.
y=3
Tātaitia te y i te y=6\left(-3\right)+2\times 2+17.
x=-3 y=3 z=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}