Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=6x+2z+17
Me whakaoti te 6x-y+2z=-17 mō y.
x+2\left(6x+2z+17\right)-z=1 2x+2\left(6x+2z+17\right)-3z=-6
Whakakapia te 6x+2z+17 mō te y i te whārite tuarua me te tuatoru.
x=-\frac{33}{13}-\frac{3}{13}z z=-40-14x
Me whakaoti ēnei whārite mō x me z takitahi.
z=-40-14\left(-\frac{33}{13}-\frac{3}{13}z\right)
Whakakapia te -\frac{33}{13}-\frac{3}{13}z mō te x i te whārite z=-40-14x.
z=2
Me whakaoti te z=-40-14\left(-\frac{33}{13}-\frac{3}{13}z\right) mō z.
x=-\frac{33}{13}-\frac{3}{13}\times 2
Whakakapia te 2 mō te z i te whārite x=-\frac{33}{13}-\frac{3}{13}z.
x=-3
Tātaitia te x i te x=-\frac{33}{13}-\frac{3}{13}\times 2.
y=6\left(-3\right)+2\times 2+17
Whakakapia te -3 mō te x me te 2 mō z i te whārite y=6x+2z+17.
y=3
Tātaitia te y i te y=6\left(-3\right)+2\times 2+17.
x=-3 y=3 z=2
Kua oti te pūnaha te whakatau.