Whakaoti mō n
n=\frac{4}{7}\approx 0.571428571
Tohaina
Kua tāruatia ki te papatopenga
5n=\frac{56}{7}-\frac{36}{7}
Me tahuri te 8 ki te hautau \frac{56}{7}.
5n=\frac{56-36}{7}
Tā te mea he rite te tauraro o \frac{56}{7} me \frac{36}{7}, me tango rāua mā te tango i ō raua taurunga.
5n=\frac{20}{7}
Tangohia te 36 i te 56, ka 20.
n=\frac{\frac{20}{7}}{5}
Whakawehea ngā taha e rua ki te 5.
n=\frac{20}{7\times 5}
Tuhia te \frac{\frac{20}{7}}{5} hei hautanga kotahi.
n=\frac{20}{35}
Whakareatia te 7 ki te 5, ka 35.
n=\frac{4}{7}
Whakahekea te hautanga \frac{20}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}